LOWER CHURCHILL HYDRO ELECTRIC DEVELOPMENT PROJECT
2014 HISTORIC RESOURCES ASSESSMENT AND RECOVERY PROGRAM

Table of Contents

EXECUTIVE SUMMARY ... VII
ABBREVIATIONS ... IX
GLOSSARY ... XI

1.0 INTRODUCTION ... 1
 1.1 PROJECT WORKS IN LABRADOR .. 1
 1.2 OTHER ASSOCIATED WORKS .. 3
 1.3 HISTORIC RESOURCES ASSESSMENT AND MANAGEMENT .. 3
 1.3.1 Stage 1 Historic Resources Overview Assessment 3
 1.3.2 Stage 2 Detailed Impact Assessment .. 3
 1.3.3 Stage 3 Recovery (Mitigation) .. 3
 1.4 2014 HISTORIC RESOURCES ASSESSMENT AND RECOVERY PROGRAM 4
 1.4.1 Permitting and Study Areas ... 4
 1.4.2 2014 Study Objectives .. 5

2.0 APPROACH AND METHODS .. 7
 2.1 STAGE 1 BACKGROUND RESEARCH ... 7
 2.2 STAGE 2 FIELD ASSESSMENT METHODOLOGY .. 7
 2.2.1 Archaeological and Contemporary Site Registration 8
 2.3 STAGE 3 RECOVERY PROGRAM METHODOLOGY .. 8
 2.4 STAGE 3 ALTERNATIVE FIELD RECORDING METHODOLOGY .. 9
 2.5 ARTIFACT PROCESSING AND CONSERVATION METHODOLOGY 10
 2.6 TRAINING PROGRAM METHODOLOGY .. 11
 2.7 PROJECT PERSONNEL ... 11

3.0 STAGE 2 ASSESSMENT RESULTS.. 15
 3.1 STAGE 2 ASSESSMENT FIELD RESEARCH RESULTS .. 17
 3.1.1 Tepiteu-shipiss .. 17
 3.1.2 Tshiashkunish 11 (FgCh-04) .. 19
 3.1.3 Hidden Cabin (13F/03 Ethno 39) ... 21
 3.2 SUMMARY .. 22

4.0 CHURCHILL VALLEY STAGE 3 RECOVERY PROGRAM (SDR) RESULTS 23
 4.1 STAGE 1 BACKGROUND RESEARCH RESULTS .. 24
 4.1.1 The Precontact Period: Recovery Results from Muskrat Falls 24
 4.1.2 The Historic Period: Hudson’s Bay Company (HBC) and the Fur Trade 25
 4.1.3 The Historic Period: Innu Settlement .. 30
 4.2 MANUAL TREE-FELLING PROGRAM RESULTS ... 32
 4.3 SANDY BANKS 2 (FGCG-01) ... 33
 4.3.1 Site Stratigraphy and Features ... 36
 4.3.2 Precontact Cultural Materials ... 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.3</td>
<td>Historic Cultural Materials</td>
<td>56</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Interpretation and Summary</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Narrow Terrace (FGCG-02)</td>
<td>62</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Site Stratigraphy and Features</td>
<td>63</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Cultural Materials</td>
<td>67</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Interpretation and Summary</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Matthew's Luck (FGCG-03)</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>Sandy Banks 4 (FGCG-04)</td>
<td>71</td>
</tr>
<tr>
<td>4.7</td>
<td>Uniekuiss 1 (FGCG-05)</td>
<td>72</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Site Stratigraphy and Features</td>
<td>74</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Cultural Materials</td>
<td>77</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Interpretation and Summary</td>
<td>80</td>
</tr>
<tr>
<td>4.8</td>
<td>Uniekuiss 2 (FGCG-06)</td>
<td>85</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Site Stratigraphy and Features</td>
<td>86</td>
</tr>
<tr>
<td>4.8.2</td>
<td>Cultural Materials</td>
<td>90</td>
</tr>
<tr>
<td>4.8.3</td>
<td>Interpretation and Summary</td>
<td>93</td>
</tr>
<tr>
<td>4.9</td>
<td>Tobacco Can (FHC-03)</td>
<td>94</td>
</tr>
<tr>
<td>5.0</td>
<td>Stage 3 Alternative Field Recording (SFR) Results</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Background Research Results</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>Tuck Locality 1 (FHCE-11)</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Lower Brook Tilt (FHC-01)</td>
<td>102</td>
</tr>
<tr>
<td>5.4</td>
<td>Kamitinishkau-Shipiss 1(FHC-02)</td>
<td>105</td>
</tr>
<tr>
<td>5.5</td>
<td>Sandy Banks Midden (FGCG-07)</td>
<td>108</td>
</tr>
<tr>
<td>5.6</td>
<td>Sandy Banks 1 (FGCG-08)</td>
<td>109</td>
</tr>
<tr>
<td>5.7</td>
<td>Tuck Locality 4 (FGCG-09)</td>
<td>122</td>
</tr>
<tr>
<td>5.8</td>
<td>Hidden Cabin (13F/03 ETHNO-38)</td>
<td>123</td>
</tr>
<tr>
<td>5.9</td>
<td>Tilt (13F/03 ETHNO-06)</td>
<td>124</td>
</tr>
<tr>
<td>5.10</td>
<td>Gull Lake Tilt (FFCH-01)</td>
<td>126</td>
</tr>
<tr>
<td>6.0</td>
<td>Discussion and Summary</td>
<td>131</td>
</tr>
<tr>
<td>6.1</td>
<td>Stage 2 Assessment</td>
<td>131</td>
</tr>
<tr>
<td>6.2</td>
<td>Stage 3 Recovery: Precontact Components</td>
<td>131</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Intra-Site Patteming and Site Functions</td>
<td>131</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Site Distribution and Settlement Patterns</td>
<td>133</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Typology, Chronology and Regional Comparisons</td>
<td>134</td>
</tr>
<tr>
<td>6.3</td>
<td>Stage 3 Recovery: Early Historic Components</td>
<td>136</td>
</tr>
<tr>
<td>6.4</td>
<td>Stage 3 Recovery: Later Historic Components</td>
<td>136</td>
</tr>
<tr>
<td>6.5</td>
<td>2014 Site Status and 2015 Workplan</td>
<td>137</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Site Status at the Close of the 2014 Field Season</td>
<td>137</td>
</tr>
<tr>
<td>6.5.2</td>
<td>2015 Workplan</td>
<td>138</td>
</tr>
<tr>
<td>6.6</td>
<td>Summary</td>
<td>139</td>
</tr>
<tr>
<td>7.0</td>
<td>References</td>
<td>141</td>
</tr>
<tr>
<td>7.1</td>
<td>Personal Communication</td>
<td>141</td>
</tr>
</tbody>
</table>
7.2 MATERIAL CITED ... 141

LIST OF TABLES
Table 2.1 2014 Historic Resources Assessment and Recovery Personnel 14
Table 4.1 Manual Tree-Felling Completed in 2014 within the Churchill Valley 32
Table 5.1 Trappers and Their Trapping Places on the Lower Churchill in 1937 (after Tanner 1947) ... 98
Table 6.1 Precontact Artifacts Recovered From Sites Excavated in the Churchill Valley in 2014 ... 132

LIST OF FIGURES
Figure 1-1 Project components in Labrador ... 2
Figure 3-1 2014 Stage 2 Assessment Locations in the Churchill Valley 16
Figure 4-1 FgCg-01 – Locus A and Locus B .. 34
Figure 4-2 Plan of Excavations at FgCg-01 ... 35
Figure 4-3 FgCg-01 Locus A - Profile from S4W38 - N4W38 (West View) 37
Figure 4-4 FgCg-01 Locus A - Profile from S2W48 - S2W36 (South View) 38
Figure 4-5 FgCg-01 Locus B - Profile from N8W12 - S4W12 (East View) 40
Figure 4-6 FgCg-01 Locus B - Profile From S2W22 - S2W08 (North View) 41
Figure 4-7 Plan of Excavations at FgCg-02 ... 65
Figure 4-8 Profile of Excavations at FgCg-02 .. 66
Figure 4-9 Plan of Excavations at FgCg-05 ... 75
Figure 4-10 Profile of Excavations at FgCg-05 ... 76
Figure 4-11 Plan of Excavations at FgCg-06 .. 87
Figure 4-12 Profile of Excavations at FgCg-06 .. 88
Figure 5-1 Aerial View of FgCg-01 and FgCg-08 ... 114

LIST OF PHOTOS
Photo 1 Testing Location 2014-RES-01 on the South Side of Tepiteu-shipiss, Churchill Valley ... 18
Photo 2 Testing Location 2014-RES-02 on the South Side of Tepiteu-shipiss, Churchill Valley ... 19
Photo 3 Aerial View of FgCh-04 on the South Side of Gull Lake, Churchill Valley ... 20
Photo 4 Testing the Narrow Ridgetop at Testing Location 2014-RES-03 on the South Side of Gull Lake, Church Hill Valley ... 21
Photo 5 View Southwest along the Churchill River, showing the Location of the Three Largest Sites in the Sandy Banks Area (FgCg-01, FgCg-05, and FgCg-06) .. 23
Photo 6 FgCg-01 Locus A: Feature 1 .. 42
Photo 7 FgCg-01 Locus A: Feature 2 .. 43
Photo 8 Overhead View of Feature 3, Locus A – FgCg-01 .. 44
Photo 9 Feature 4, Locus A – FgCg-01 .. 45
Photo 10 Overhead View of Feature 8, Locus B, FgCg-01 .. 47
Photo 11 Projectile Points Recovered from FgCg-01 ... 49
Photo 12 Bifaces Recovered from FgCg-01 .. 50
Photo 13 Scrapers Recovered from FgCg-01 .. 52
Photo 14 Prefoms Recovered from FgCg-01 ... 53
Photo 15 Linear Flakes Recovered from FgCg-01 ... 54
Photo 16 Retouched and Utilized Flakes and Core Recovered from FgCg-01 55
Photo 17 Grit-Tempered Ceramic Sherds Recovered from FgCg-01 Locus A, Feature 1 .. 56
Photo 18 Historic Artifacts Recovered from FgCg-01 Locus A Feature 3 58
Photo 19 View South across FgCg-02 indicating Features 1 and 2 64
Photo 20 Scraper, Biface and Linear Flakes recovered from FgCg-02 68
Photo 21 Prefoms Recovered from FgCg-02 ... 69
Photo 22 Excavation Unit at FgCg-03 .. 71
Photo 23 Extent of Excavation at FgCg-04 ... 72
Photo 24 The Setting of FgCg-05 at the Bottom of a Small Cove at Right. FgCg-06, at Left, is on the Higher Terrace East of the Cove ... 73
Photo 25 View Northwest across Excavations at FgCg-05. Feature 1 is the Dense Cluster of Quartzite Debitage on the Edge of the Terrace at Center....... 77
Photo 26 View Southeast across Excavations at FgCg-05 Note the Scatter of Rock and Firecracked Rock on the Terrace Fall at Left (Feature 2), Amid Slumped and Folded Sediments on the Slope ... 78
Photo 27 Bifaces Recovered from FgCg-05 .. 79
Photo 28 Prefoms Recovered from FgCg-05 ... 80
Photo 29 Linear Flakes Recovered from FgCg-05 ... 81
Photo 30 Scrapers and Core Fragments Recovered from FgCg-05 82
Photo 31 Retouched and Utilized Flakes Recovered from FgCg-05 84
Photo 32 Panorama of FgCg-06, Large berm visible under baulk. View south 86
Photo 33 Feature 1, Firecracked Rock and Quartzite Scatter at FgCg-06 89
Photo 34 Selected Projectile Point Fragments from FgCg-06 91
Photo 35 Selected Linear Flakes from FgCg-06 ... 92
Photo 36 Scrapers in Black Chert and Quartzite from FgCg-06 93
Photo 37 Excavation Unit at FhCf-03 .. 95
Photo 38 View of Cabin at FhCe-11 .. 102
Photo 39 View Southwest of Collapsed Line Tilt at FhCf-01 104
Photo 40 View Northeast of Collapsed Line Tilt at FhCf-01 105
Photo 41 View North of Collapsed Cabin at FhCf-02... 107
Photo 42 View of Beverage Container Midden at FhCf-02 108
Photo 43 Extent of Surface Scatter at FgCg-07 ... 109
Photo 44 Brian Michelin at his Sandy Banks Tilt in 1981 ... 110
Photo 45 Brian Michelin’s Sandy Banks Tilt in 1981 .. 111
Photo 46 Woodstove at Brian Michelin’s Sandy Banks Tilt in 1981 111
Photo 47 View North of Brian Michelin’s Sandy Banks Tilt in 1998 112
Photo 48 View West of Brian Michelin’s Sandy Banks Tilt in 1998 113
Photo 49 Northeast View of Tilt Remains Showing Ax-hewn Logs and Roof Rafters, a Woodstove and Galvanized Bolt Fastener (foreground) 115
<table>
<thead>
<tr>
<th>Photo</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo 50</td>
<td>South View of Tilt Remains, Showing Ax-Hewn Logs, Roof Rafters and Woodstove</td>
</tr>
<tr>
<td>Photo 51</td>
<td>North View of Tilt Remains Showing Structural Elements, Woodstove and Galvanized-Metal Stovepipe</td>
</tr>
<tr>
<td>Photo 52</td>
<td>Close-up of Woodstove (Note This Appears To Be The Same Stove Shown in 1981; Dawson 2013: 137)</td>
</tr>
<tr>
<td>Photo 53</td>
<td>Southwest View of Collapsed Tilt (Note Mounded Refuse Midden in Background)</td>
</tr>
<tr>
<td>Photo 54</td>
<td>Southwest View of Midden Prior to Tree and Brush Clearing (Note that the Raised Area is not Comprised Entirely of Refuse, but is Partially a Large Over-Grown Boulder)</td>
</tr>
<tr>
<td>Photo 55</td>
<td>Close-up of Boulder and Midden Material (Note Smaller Cobbles that Appear Fire-Cracked)</td>
</tr>
<tr>
<td>Photo 56</td>
<td>West View of Midden (Note Glass Bottles and Food, Fuel and Paint Cans, and Other Metal Containers, a Plastic Gas Can, as well as Three Rusted / Deteriorated Woodstoves)</td>
</tr>
<tr>
<td>Photo 57</td>
<td>Northeast View of Midden (Note the Remains of Three Woodstoves, Numbered 1-3, as well as Several Metal Containers Likely Used for Fuel Storage)</td>
</tr>
<tr>
<td>Photo 58</td>
<td>Close-up of Woodstove # 2 Fabricated From a Metal Barrel (“Drum”) (Note the Short Metal Stands Fastened at the Base)</td>
</tr>
<tr>
<td>Photo 59</td>
<td>Close-up of Woodstove # 3 (Side-View Shown in Photo 57 Above)</td>
</tr>
<tr>
<td>Photo 60</td>
<td>View South of Collapsed Cabin at 13F/03 Ethno 38</td>
</tr>
<tr>
<td>Photo 61</td>
<td>Southeast View of 13F/03 Ethno 6</td>
</tr>
<tr>
<td>Photo 62</td>
<td>Log Framed Outbuilding</td>
</tr>
<tr>
<td>Photo 63</td>
<td>View North of Collapsed Tilt at FfCh-01</td>
</tr>
<tr>
<td>Photo 64</td>
<td>View Northeast of Collapsed Tilt at FfCh-01</td>
</tr>
<tr>
<td>Photo 65</td>
<td>Remains of Canvas-Clad Frame-built Canoe at FfCh-01</td>
</tr>
</tbody>
</table>
Executive Summary

Following completion of recovery work at Muskrat Falls in 2013, the 2014 Historic Resources Management Program for the Lower Churchill Project focused on the Muskrat Falls reservoir area between Muskrat Falls and Gull Island, and in particular on a cluster of precontact and historic sites in the Sandy Banks area, midway between Muskrat Falls and Gull Lake. Stage 2 assessment and Stage 3 recovery operations commenced in August 2014 and were completed in October 2014. Stage 3 recovery operations in 2014 included both SDR (excavation) and AFR (surface-recording).

Stage 2 assessment was undertaken along the lower reaches of Tepiteu-shipiss, a section of this stream that lay within the reservoir area but had not previously been mapped for archaeological potential. The results were negative and archaeological potential assessed as low-moderate. No further assessment is required in this location. Stage 2 assessment near a contemporary cabin site (13F/03 Ethno 39) led to negative results indicating that earlier historic remains were not present. Stage 2 assessment at FgCh-04 on the south side of Gull Lake also led to negative results and indicated that while there may once have been a precontact site here, as evidenced by a sparse lithic scatter on the beach, the source deposit has been entirely deflated by erosion. No further recovery work appears to be warranted, or even feasible, at this site.

Stage 3 (AFR) recording operations are complete at seven sites. The sites investigated consist primarily of recreational cabins post-dating the 1970s, but also include two “line tilts” from the peak of the twentieth-century Settler trapping period in the Churchill Valley: FhCf-01, a line tilt subsidiary to the Michelin main cabin at Sandy Banks, and FfCh-01, another line tilt associated with Judson Blake’s “main cabin” on Gull Lake. Another historic tilt investigated in 2014 was FgCg-08, the Michelin’s main cabin at Sandy Banks. AFR work has yet to be completed at FgCg-08, and also at FgCg-09, a cabin site, likely post-dating the 1960s, which has not yet been relocated.

Stage 3 (SDR) recovery operations are complete at five sites. Two of these sites (FgCg-03 and FhCf-03) yielded negative results, but recovery work is deemed to be complete. The remaining three (FgCg-02, FgCg-05, and FgCg-06) are precontact sites that have also been completely recovered. Two of these (FgCg-02 and FgCg-05) yielded evidence for small, seemingly-single-occupation precontact travel stops. Artifacts recovered from these sites were fashioned almost exclusively from quartzite and included preforms, linear flakes and retouched/utilized flakes, with large quantities of primary, secondary and tertiary debitage from quartzite-knapping.

The third site, FgCg-06, yielded evidence for a possible disturbed linear hearth feature and a relatively high artifact assemblage which included quartzite tools, but also flake scrapers and...
other tools of fine-grained opaque cherts, as well as four sherds of Aboriginal grit-tempered ceramic.

FgCg-01 yielded evidence for precontact hearth features, several of them linear in form, associated with quartzite-dominated lithic assemblages, but also with projectile points and other tools of opaque cherts, some of which appear to derive from sources on the west coast of the Island of Newfoundland. Two of these hearth features also yielded sherds of Aboriginal grit-tempered ceramic. The precontact components at FgCg-01 are tentatively interpreted as the remains of a significant Late-Precontact Period communal feasting and gathering site. Also recorded at FgCg-01 were two hearth features thought to date to the Historic Period. One of these (Feature 3) is relatively intact, and ceramic and clay tobacco-pipe fragments recorded in direct association date the feature to the first half of the nineteenth century, contemporary with the Hudson’s Bay Company Sandy Banks post. The other is interpreted as a possible stove platform dating to the nineteenth or first part of the twentieth century.

Further work in 2015 is planned for the multi-component precontact and historic site at FgCg-01; this work will include dismantling exposed features, expanding excavations, and testing to determine whether additional components are present. Further excavation is also planned at FgCg-04, an historic site which may represent an early historic (late nineteenth-century) tilt location, or alternatively a tilt dating to the twentieth century. Recovery work planned for 2015 also includes completion of AFR at two later historic sites (FgCg-08 and FgCg-09), and commencement of excavation of the significant cluster of precontact archaeological sites identified on the north shore of Gull Lake, toward the western end of the Muskrat Falls reservoir area.
Abbreviations

AFR Alternative Field Recording
AMS Accelerator Mass Spectrometry
asl Above sea level
BP Before present
c.a. circa
cm Centimeter
CPT Cone Penetration Test
GIS Geographic Information System or Geospatial Information System
GPS Global Positioning System
HVac High Voltage Alternating Current
HVdc High Voltage Direct Current
Km Kilometre
kV Kilovolt
m Metre
m² Square metre
PAO Provincial Archaeology Office of the Government of Newfoundland and Labrador
ROW Right of Way
SDR Systematic Data Recovery
SFR/SS Systematic Field Recording and Subsurface Sampling
TL Transmission Line
Glossary

A or Ae Horizon Soil horizons are specific layers in the soil. The A Horizon is the topmost level of sediment beneath the organic (e.g., moss, leaf litter) layer. There are many variations but in northern forest soils a common type is “Ae,” a leached grey horizon. The B Horizon lies beneath the A Horizon.

Aboriginal A broad term referring to those peoples who have inhabited North America since before European contact.

Accelerator Mass Spectrometry (AMS) A form of radiocarbon dating that gives more precise results than conventional radiocarbon dating and can be employed using smaller samples of carbon.

Adze A bladed woodworking tool similar to an axe, but with the blade mounted perpendicular to the handle.

Alternative Field Recording (AFR) Detailed photographic, video and illustrative recording of a site, possibly also including the collection and conservation of visible artifacts. AFR is normally implemented at sites, such as historic tilts, where features and artifacts are located on the surface and excavation is not required.

Amerindian A broad term sometimes used to refer to the aboriginal inhabitants of North America, excepting the Arctic-adapted Inuit and Palaeo-Eskimo peoples. In Newfoundland and Labrador, it may refer to the Maritime Archaic, Intermediate and Late Precontact occupations, as well as to the historic Beothuk and the historic and contemporary Innu and Mi'kmaq people.

Archaeological Site A location which contains the material remains of human land use in the past. Technically, only those sites which date to the historic or precontact periods and which are assigned Borden numbers are true archaeological sites. Sites with more recent remains are considered ethnographic sites and are assigned Ethno numbers by the PAO.

Archaic In Labrador, the initial period of Amerindian occupation, dating from approximately 8,000 – 3,700 BP. In Newfoundland and Labrador, generally synonymous with Maritime Archaic.

Arris In precontact lithic technology, the ridge or ridges running parallel to the edges of a blade or linear flake. These ridges mark the edges of blades or linear flakes previously removed from the core.
Artifact: A discrete object deliberately manufactured or modified by human activity.

Bedrock: A general term for the rock, usually solid, that underlies soil or other unconsolidated superficial material.

Before Present (BP): In radiocarbon dating, “Present” is arbitrarily fixed at the year 1950 AD.

Berm: A low raised ridge. In this study, the term refers to the ridge which flanks a prepared roadway.

B Horizon: A soil horizon is a specific layer in the soil. The B Horizon lies beneath the A Horizon and is commonly referred to as ‘subsoil’. It may be characterized by concentrations of minerals. In northern forest soils, the B Horizon is often rich in iron and is orange, red or reddish-black in colour.

Blade: In precontact archaeology, a type of stone tool consisting of long, narrow, parallel-sided flake deliberately detached from a prepared stone core, generally for use as an expedient disposable cutting tool. Blades exhibit one or more arrises, resulting from the repeated removal of blades from the core. See also Linear Flake.

Blank: A very early stage in the manufacture of a flaked stone artifact, usually a partly-worked piece of chert or other stone, made at a quarry for later use elsewhere. A blank can resemble a thick, wide biface and may serve as the basis for manufacturing almost any type of stone tool.

Biface: In precontact archaeological sites, a lithic artifact chipped on both opposite sides is referred to as a biface, or bifacially-flaked tool.

Borden Number: Archaeological sites in Canada are registered under a nationwide site registration system known as the Borden System, which assigns each site a unique Borden number. In Newfoundland and Labrador, the PAO assigns these numbers. Only true archaeological sites (those predating the mid-twentieth century) receive a Borden number. More recent ethnographic sites are assigned an Ethno number.

Charles Complex: A culture-historical unit representing an early-middle period in the Intermediate Period of central Labrador, ca. 3000 BP to 2700 BP. Characterized by triangular and linear flakes, bifaces, and formal scrapers, many fashioned of banded rhyolite.

Chert: A fine-grained silica-rich sedimentary rock, often selected by precontact peoples for manufacturing chipped stone tools.

Circa (ca.): Approximately (literally “around”).
Cladonia A white, moss-like lichen which grows abundantly on sandy soils in Labrador and serves as an important winter food source for caribou. See lichen woodland.

Cone Penetration Test A geotechnical investigation method in which a cone-tipped probe is inserted into sediments in order to determine the bearing capacity or other properties of soils.

Component In an archaeological site, a component is a period of occupation. A site occupied at various times, for example, once 3,000 years ago and again less than 25 years ago, may be said to have a precontact component and a contemporary component.

Contemporary Site A location which contains the material remains of human land use in the recent past (by convention, post-dating the mid-twentieth century). As a category of land use sites, “contemporary” may be used interchangeably with “ethnographic.” Contemporary sites may be important in interpreting the history of human land use in a region, but are not considered true archaeological sites, and are not assigned Borden numbers. Contemporary/recent sites are assigned Ethno numbers by the PAO.

Core A piece of knappable stone used as the basis for producing flakes or blades for use as tools. Cores may be deliberately prepared to produce flakes of specific types. For example, blade cores are cores specifically prepared for the production of narrow, straight-sided blades.

Cortex The naturally-weathered outer surface of a rock, particularly a beach cobble.

Cortical Flake A flake of stone whose dorsal surface is partly or entirely cortex. See also Primary Flake and Secondary Flake.

Corner-Notched In precontact archaeology, a descriptive term applied to bifaces modified for hafting by chipping notches into the basal comers, forming drooping shoulders and an expanding base.

Cow Head Complex A culture-historical unit representing the first period in the Late Precontact Period on the Island of Newfoundland, ca. 2000 BP to 1000 BP.

Culture-Historical Sequence In archaeology, the human history of a region, defined as a series of culture-historical units, each characterized by distinctive artifact styles.
Culture-Historical Unit In archaeology, a division of the human history of a region. It consists of a period of time defined by diagnostic artifact and feature styles that distinguish it from earlier and later periods in a culture-historical sequence. Culture-historical units are equated with past human cultures and given distinctive names. They may be broad periods of time (e.g. Intermediate Period or Late Precontact Period) or finer chronological subdivisions (e.g. Daniel Rattle Complex, North West River Phase).

Daniel Rattle Complex A culture-historical unit representing the first period in the Late Precontact Period of coastal Labrador, ca. 2000-1000 BP. Characterized by moderately large projectile points and large triangular-lanceolate bifaces fashioned almost exclusively of Ramah.

Dart In precontact archaeology, a dart is a projectile larger and heavier than an arrow but shorter than a spear, usually projected using a spear-thrower.

Debitage In precontact sites, the lithic waste flakes and shatter left over from the manufacture of stone tools.

Diagnostic Tool Type A class of artifact with stylistic features that allow it to be assigned to a culture-historical unit.

Dorsal Surface For precontact lithics, the “back,” generally the most convex or most flake-scarred surface, on a flake or stone tool.

Dorset The final period in the Palaeo-Eskimo occupation of the Island of Newfoundland and the Labrador coast, dating approximately 2,500 to 550 BP.

Duff The layer of organic, and partly-decayed organic material on the floor of a forest, overlying the mineral sediment.

Ethnographic site A location that contains the material remains of human land use in the recent past (by convention, post-dating the mid-twentieth century). As a category of land use sites, “ethnographic” may be used interchangeably with “contemporary.” Ethnographic sites may be important in interpreting the history of human land use in a region, but are not considered true archaeological sites, and are not assigned Borden numbers. Ethnographic sites are assigned Ethno numbers by the PAO.

Ethno Number The registration number assigned to an ethnographic site by the PAO.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expedient Tool</td>
<td>In precontact archaeological sites, a retouched or utilized flake, or other stone tool that has been minimally-worked. Expedient tools were often disposable implements, intended to be used for very short periods of time and then discarded.</td>
</tr>
<tr>
<td>Feature</td>
<td>In archaeology, a feature is a group of related objects, which may include artifacts, and which reflect past human activity. Features differ from artifacts in that they are an assemblage of objects. As a result, while the individual objects within a feature may be collected and physically removed, the feature itself is a set of relationships between those objects, which can only be recorded in the field. An example would be a hearth, composed of interrelated rocks, artifacts, and soils.</td>
</tr>
<tr>
<td>Flake</td>
<td>In pre-contact archaeological sites, a flake is a sharp-edged piece of fine-grained rock left over from making stone tools. See debitage.</td>
</tr>
<tr>
<td>Flakepoint</td>
<td>A projectile point made from a flake, generally shaped with minimal retouch.</td>
</tr>
<tr>
<td>Friable</td>
<td>Easily crumbled or reduced to powder.</td>
</tr>
<tr>
<td>Grit Temper</td>
<td>Coarse sand added to the paste of precontact Aboriginal ceramics in North America to strengthen clay vessels and prevent cracking during firing.</td>
</tr>
<tr>
<td>Groswater</td>
<td>A period in the Palaeo-Eskimo occupation of the Island of Newfoundland and the Labrador coast, dating approximately 2,800 to 2,100 BP.</td>
</tr>
<tr>
<td>Gunflint</td>
<td>An artifact found on historic sites. A gunflint is a prepared square or oval of flint used to strike the spark that ignites the powder in a flintlock musket. European flint is a type of chert, but is readily distinguishable from the North American cherts employed by precontact peoples in Labrador for the manufacture of stone tools.</td>
</tr>
<tr>
<td>Hearth</td>
<td>A campfire feature. In central Labrador archaeology, these generally take the form of distinct clusters of firecracked rocks and charcoal. However, sand-mound hearths and pit hearths are also known.</td>
</tr>
<tr>
<td>Historic Site</td>
<td>In Newfoundland and Labrador, an archaeological site dating between the initial period of European contact with Aboriginal peoples (approximately 500 BP) but before the mid-twentieth century.</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Historic Resources</td>
<td>In the context of environmental assessment, these include palaeontological, architectural and archaeological resources, but may also include ethnographic sites or other material evidence of past human land use.</td>
</tr>
<tr>
<td>Ice-Push Ridge</td>
<td>A ridge of sediment formed along the beach of a river, lake, or bay, when ice creeps shoreward and pushes rock and sediment into linear mounds.</td>
</tr>
<tr>
<td>Illuviation</td>
<td>In a soil layer, this refers to the percolation of water leaching out particles from one layer (e.g. the Ae Horizon) and redeposited them in an underlying soil layer (e.g. the B Horizon).</td>
</tr>
<tr>
<td>In situ</td>
<td>Literally “in place.” In situ archaeological remains are those which are undisturbed and still found in the same place as when they were originally deposited through past human activities.</td>
</tr>
<tr>
<td>Intermediate Period</td>
<td>The middle period of the Amerindian occupation of Labrador, including the interior, from approximately 3,500 to 2,000 BP.</td>
</tr>
<tr>
<td>Kaolin</td>
<td>a soft white clay employed in the manufacture of porcelain, and also for the manufacture of clay tobacco pipes found on historic sites in North America.</td>
</tr>
<tr>
<td>Knapping</td>
<td>The chipping of fine-grained stone such as chert to fashion tools and other objects.</td>
</tr>
<tr>
<td>Labrador Trough Cherts</td>
<td>A group of cherts with highly variable colours and flaking properties derived from the iron-bearing sedimentary and volcanic rocks of the Labrador Trough in western Labrador.</td>
</tr>
<tr>
<td>Lanceolate</td>
<td>In precontact archaeology, a descriptive term applied to narrow, lance-shaped bifaces.</td>
</tr>
<tr>
<td>Late Precontact</td>
<td>The final precontact Amerindian occupation of Newfoundland and Labrador after the Intermediate period, beginning approximately 2,000 BP. This period is also referred to as “Recent Indian” in some archaeological literature. The Late Precontact period arbitrarily ends at the time of European contact, approximately 500 years BP, but the same people continued to inhabit Labrador and are directly ancestral to the Innu, while Late Precontact people on the Island of Newfoundland were ancestral to the Beothuk.</td>
</tr>
<tr>
<td>Ledum</td>
<td>The genus commonly known as “Labrador Tea.” An ericaceous shrub now classified within the genus Rhododendron.</td>
</tr>
</tbody>
</table>
Lichen Woodland An open woodland vegetation community which, in Labrador, generally consists of black spruce widely-spaced over a ground cover of Cladonia. This vegetation pattern is common in central Labrador and often associated with nutrient-poor, well-drained sandy terraces.

Line-Cutter A deeply-notched cutting tool used for quickly cutting line or cordage. Deeply-notched unifacial stone tools may have been employed for this purpose.

Linear Flake A flake with some attributes of a blade but lacking one or more of the attributes associated with blade technology, including evidence for the use of deliberately prepared blade cores.

Lithic Literally, a term referring to stone. In the context of historic resources, lithic usually refers to stone tools and debitage found on archaeological sites once occupied by precontact peoples.

Loam A soil composed of a mixture of sand and silt, possibly also containing smaller amounts of clay.

Locus (pl. Loci) Literally a “place.” In archaeological literature a locus is a discrete concentration of artifacts and features that forms one part of a larger archaeological site.

Macroblade In precontact lithic technology, a large blade more than 11 mm wide.

Maritime Archaic The first major period in the Amerindian occupation of the province, dating approximately 8,000 to 3,700 BP in Labrador, and from ca. 6,000 BP to 3,200 BP on the Island.

Metamorphic In geology, normally refers to recrystallized minerals; rocks which have been transformed in the past by extreme temperature and/or pressure.

Microblade In precontact lithic technology, a small blade less than 11 mm wide. Normally associated with Palaeo-Eskimo archaeological sites.

Midden A deliberate, often concentrated, deposit of discarded waste, which may include animal bone, plant waste, and/or shell, along with tools, clothing, containers, and other artifacts.

Mistassini Quartzite A very fine-grained, semi-translucent, waxy-finished quartzite derived from the Colline Blanche on the Témiscamie River in Québec and widely-used for stone tool manufacture in the northern Québec interior.

Mokoshan A spiritually-important Innu communal feasting ceremony.
Mugford Chert: A semi-translucent stone from the Cape Mugford area of the north-central Labrador coast, south of Ramah Bay. Mugford, or “Cod Island Chert” often resembles Ramah but may have a greener colour. Widely used for stone tool manufacture in north-central Labrador.

North West River Phase: A culture-historical unit representing the final period in the Intermediate Period in Labrador, ca. 2000 BP. Characterized by ovate and leaf-shaped bifaces and preforms bifaces fashioned almost exclusively of local quartzite.

Ordovician Chert: On the Island of Newfoundland, Ordovician cherts are particularly abundant in the Cow Head Group of western Newfoundland. These cherts, often green, tan, or brown in colour, were widely used by precontact peoples on the island of Newfoundland for stone tool manufacture. In Labrador, Ordovician cherts from western Newfoundland were widely used in the Strait of Belle Isle in all periods, and, in sites of the Groswater Palaeo-Eskimo period are commonly found as far north as the north-central Labrador coast.

Palaeo-Eskimo: A term referring to a series of occupations of Newfoundland and Labrador by Arctic-adapted peoples arriving from the north. Although also deriving from the north, the Palaeo-Eskimo peoples were not directly ancestral to the later Inuit occupation.

Palimpsest: In archaeology, refers to a distribution of cultural materials that reflects multiple successive occupations and depositions of cultural material within a single location.

Paste: In ceramic technology, the clay mixture used to form the body of a ceramic vessel.

Point Revenge Complex: A culture-historical unit representing the second and final period in the Late Precontact Period of coastal Labrador, ca. 1000 BP to 500 BP. Characterized by small projectile points and triangular bifaces fashioned almost exclusively of Ramah.

Podzol/Podzolic: Refers to the typical soil associated with coniferous forest in the subarctic, including central Labrador. Podzols are formed through the process of podzolisation, whereby organic material and soluble minerals (particularly iron) are leached from the upper levels of sediment, forming a white or grey A Horizon, and redeposited below, forming an orange, red or maroon B horizon.

Porcelain: In North American archaeology, a high-fired, hard, vitrified and translucent historic Chinese or European ceramic ware containing a high proportion of kaolin.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portage</td>
<td>The practice of carrying boats or supplies around an obstacle to water travel, such as a falls or rapids. Also refers to the route or trail followed when doing so.</td>
</tr>
<tr>
<td>Precontact</td>
<td>The period of Aboriginal occupation in Newfoundland and Labrador that occurred before significant contact with Europeans, approximately 500 years BP.</td>
</tr>
<tr>
<td>Preform</td>
<td>An early stage in the reduction and manufacture of a flaked stone artifact. A preform may resemble a finished biface but will be larger, thicker and more roughly-worked.</td>
</tr>
<tr>
<td>Primary Flake</td>
<td>A flake of stone on which the dorsal surface is entirely cortex. See also Cortical Flake.</td>
</tr>
<tr>
<td>Primary Reduction</td>
<td>The initial removal of cortical flakes from a beach cobble or other cortical piece of fine-grained stone. The first stage in manufacturing stone tools.</td>
</tr>
<tr>
<td>Projectile point</td>
<td>The cutting and piercing end of a projectile, such as a spear, harpoon, dart or arrow. In pre-contact archaeological sites, projectile points are normally made of chert or other fine-grained stone.</td>
</tr>
<tr>
<td>Provincial Archaeology Office</td>
<td>The office of the Government of Newfoundland and Labrador which regulates and oversees the protection of historic resources within the province.</td>
</tr>
<tr>
<td>Quartz</td>
<td>An extremely common clear, glassy silicate occurring naturally in many forms. Both massive and crystalline varieties were used by precontact people in Labrador to make chipped stone tools.</td>
</tr>
<tr>
<td>Quartzite</td>
<td>A granular metamorphosed quartz which, despite its relatively coarse grain, is adequate for the manufacture of chipped stone tools. Quartzite is readily available in cobble form on beaches in the Muskrat Falls area.</td>
</tr>
<tr>
<td>Radiocarbon Dating</td>
<td>An absolute dating technique that dates the age of organic materials such as wood, bone, and charcoal by measuring the relative frequency of carbon isotopes present in a sample.</td>
</tr>
<tr>
<td>Ramah</td>
<td>A metamorphosed quartzite found on the Togkat coast of Labrador. Prized by pre-contact peoples for manufacturing chipped stone tools and widely traded across eastern North America in the precontact period.</td>
</tr>
<tr>
<td>Réappropriation du Littoral</td>
<td>A culture-historical unit in the Strait of Belle Isle, equivalent to the Intermediate Period in central Labrador, ca. 3500 BP to 2500 BP.</td>
</tr>
</tbody>
</table>
Red Ochre - A bright or rich red friable mineral soil composed of hematite-rich or dehydrated iron oxide. In powdered form it has been widely used as a pigment from antiquity down to the present day. In eastern North America, red ochre pigments were used by Amerindian people in the contact period as body paints, as well as to paint clothing, canoes, and other objects.

Reduction (Lithic) - The process of chipping stone to produce stone tools, blanks, and preforms. Lithic reduction produces large quantities of debitage. See also Knapping.

Refined Earthenware - A broad category of historic ceramic wares originally developed in England in the eighteenth century, and including creamware, pearlware, and “whiteware”.

Retouch - The deliberate removal of flakes along the edge of a roughed-out stone tool or flake to produce a bifacial or unifacial working edge.

Rhyolite - A silicate-rich igneous rock. Fine-grained varieties are particularly suitable for manufacturing stone tools. Rhyolites visually identical to those found in central Labrador archaeological site have been identified in river cobble form on the upper-middle Churchill River upstream of Minipi Rapids, and as small cobbles in the Muskrat Falls area. Associated with sites of the Intermediate Period in general and the Charles Complex in particular.

Sand - A granular sediment in which individual grains range from 0.0625 mm to 2 mm in size.

Saunders Complex - A culture-historical unit which comprises much of the Intermediate Period on the north-central Labrador coast, ca. 3500 BP to 2800 BP. Characterized by a wide variety of artifact types fashioned from Saunders Chert, rhyolite, and quartzite.

Saunders Chert - A colourful fine-grained opaque chert, generally pink, salmon-pink, red or purple in colour, derived from an as-yet unknown source, likely in the north-central Labrador interior. Widely used for stone tool manufacture in the Intermediate Period in central Labrador, but not normally common on sites of other periods.

Schist - A medium-grained metamorphic rock.

Scraper - In archaeology, a unifacially-chipped stone tool generally employed for hideworking or woodworking.

Secondary Flake - A flake of stone on which the dorsal surface is partly a cortical surface.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settler</td>
<td>In nineteenth-century historic sources, "Settler," and more rarely "Planter" are terms used to refer to people of European or mixed descent who came to settle permanently in central Labrador. Their modern descendents may nowadays affiliate politically with Nunatsavut, NunatuKavut, or neither.</td>
</tr>
<tr>
<td>Shaputuan</td>
<td>A large feasting tent erected by the Innu for performing mokoshan. Other neighbouring peoples, such as the Cree of Québec, also build Shaputuan structures.</td>
</tr>
<tr>
<td>Shatter</td>
<td>Irregular thick or blocky lithic debris produced during the making of stone tools.</td>
</tr>
<tr>
<td>Side-Notched</td>
<td>In precontact archaeology, a descriptive term applied to bifaces modified for hafting by chipping notches into both sides near the base, generally forming straight shoulders and a rectangular or semi-circular base.</td>
</tr>
<tr>
<td>Silt</td>
<td>A fine granular sediment in which individual grains range from 0.0039 mm to 0.0625 mm in size.</td>
</tr>
<tr>
<td>Siltstone</td>
<td>A fairly fine-grained sedimentary rock composed of silt-sized particles.</td>
</tr>
<tr>
<td>Slate</td>
<td>A very fine-grained metamorphosed sedimentary rock which tends to fracture into sheets. In Labrador precontact archaeology, slate was most commonly used for making ground and polished stone tools such as axeheads, and adzes.</td>
</tr>
<tr>
<td>Soil Development Horizon</td>
<td>A recognizable soil layer formed by one or more of the principal soil horizon development processes: addition, transformation, translocation, and removal. All of these may act on soils, but in typical podzolic soils the most conspicuous process is transformation, creating distinctly-coloured A and B horizons. In Labrador, these are often not separately-deposited layers, but rather a single sediment column transformed differently at higher and at lower levels by chemical processes. See Podzol/podzolic.</td>
</tr>
<tr>
<td>Sphagnum</td>
<td>A genus of green mosses particularly associated in Labrador with spruce-sphagnum forests and peat bogs.</td>
</tr>
<tr>
<td>Spokeshave</td>
<td>A concave-edged planning tool used to form and smooth wooden shafts, such as arrow or spear-shafts.</td>
</tr>
<tr>
<td>Stage 1 Historic Resources Assessment</td>
<td>The initial step in the historic resources assessment process in Newfoundland and Labrador. Typically involves background research and may involve a preliminary field study. The Stage 1 Assessment is intended to serve as the basis for determining if any additional research is required.</td>
</tr>
</tbody>
</table>
Stage 2 Historic Resources Assessment: The second stage in the historic resources assessment process in Newfoundland and Labrador, following the Stage 1 Assessment. Stage 2 Assessment involves a more detailed and extensive field study to gain a thorough understanding of the historic resources within a defined study area and any interactions that may result from any proposed development.

Stage 3 Historic Resources Assessment: Stage 3 Assessment follows directly from previous assessment studies and may include a broad range of activities and mitigation measures, including site avoidance, or scientific recovery (excavation) of archaeological sites. Stage 3 Assessment constitutes the management of any historic resources that may be present within a Project Area and its objectives are to protect resources and mitigate potentially adverse effects to sites of cultural and/or spiritual importance.

Stoneware: In North American archaeology, a high-fired, hard and vitrified historic European ceramic ware type.

Stratigraphy: In archaeology, the study of soil layers undertaken in order to understand the processes by which archaeological sites are formed and transformed over time.

Stream Swamp: Periodically-flooded terrain on the margins of a waterway, generally characterized in Labrador by reworked unstable sediments and dense alder growth.

Systematic Data Recovery: The scientific and systematic excavation and recording of historic resources using accepted data recovery techniques. Generally synonymous with archaeological excavation.

Systematic Field Recording and Subsurface Sampling: Assessment of a known historic site by means of visual inspection of surface-visible cultural materials and subsurface sampling to determine whether the site contains additional evidence for undetermined historic or older occupation(s).

Terrace: An area of level terrain bordered by a slope, in Labrador generally formed by riverine erosion or by falling sea levels.

Tertiary Flake: A flake of stone on which the dorsal surface exhibits no cortex.

Testpit: In archaeological assessment, a testpit is usually a small pit excavated by shovel and hand tools. Large number of testpits may be excavated within a single testing location. Testpitting is usually the only way to locate those archaeological sites which are not visible on the surface.
Treethrow
The depression, often flanked by a mound, that results when a tree falls and its rootmass and associated soils are pulled from the ground, generally as a result of wind action.

Uniface
In precontact archaeological sites, a lithic artifact chipped on a single side is referred to as a uniface, or unifacially-flaked tool. Unifaces are often assumed to have served as scraping or planning tools.

Use-wear
Flaking scars, often quite small, that are not produced by deliberate retouch but represent wear damage resulting from the use of an unmodified flake as a cutting or scraping tool.

Utilized Flake
A flake which has not been retouched or otherwise deliberately shaped, but which has been used as a scraping or cutting tool, leaving minute flake scars as evidence of use-wear.

Ventral Surface
For precontact lithics, the “bottom,” generally the flattest and/or smoothest surface, on a flake or stone tool.

Whiteware
Refined earthenware of European origin with a white paste and clear lead glaze, dating primarily after the 1820s.

Zone
In the context of this study, a zone is a landform with particular slope, vegetation and drainage features, and specifically one that has been identified and mapped within the Survey Area. The characteristic features will determine which zone type a zone belongs to and this will determine its archaeological potential rating. These will also determine whether testing locations will be chosen within that zone as part of the archaeological assessment.

Zone Type
All of the zones which share certain characteristics of slope, or drainage, or vegetation, are assigned to a particular zone type. Zone types are assigned archaeological potential ratings, based on the probability of finding archaeological sites within zones of that zone type.
1.0 INTRODUCTION

1.1 Project Works in Labrador

Nalcor Energy (Nalcor) is constructing extensive infrastructure at Muskrat Falls, central Labrador, as part of the development of the Lower Churchill River for hydroelectric power. The principal works in Labrador required for the development (hereinafter referred to as the “Project” or LCP), include: extensive tree and brush clearing at Muskrat Falls and within the upstream reservoir; stabilization of the North Spur; bulk excavation of earth and rock from the south side of Churchill River; and construction of the dam itself as well as access roads, an accommodations camp and office complex. Key Project components required for transmission of power include construction of a high voltage alternating current (HVac) transmission line (TL) from Muskrat Falls to Churchill Falls, a high voltage direct current (HVdc) transmission line from Muskrat Falls to Forteau Point on the Strait of Belle Isle, southern Labrador, a switchyard and associated cable infrastructure at Forteau Point, and an electrode site at l’Anse au Diable (Figure 1-1).
Figure 1-1 Project components in Labrador
1.2 Other Associated Works

Other works associated with the hydroelectric development of Muskrat Falls include: installation of submarine cables across Strait of Belle Isle to Shoal Cove on the island’s Great Northern Peninsula; construction of a HVdc transmission line from Shoal Cove to Soldier’s Pond on Newfoundland’s Avalon Peninsula; construction of an electrode site at Dowden’s Point, Conception Bay; construction of a branch transmission line from the Newfoundland grid to the southwest coast of the island; and installation of additional submarine cables from the island’s southwest coast to Nova Scotia. All Project components are scheduled for completion in 2017.

1.3 Historic Resources Assessment and Management

The overall goals of the historic resources assessments are to identify and manage the impact of the development on any archaeological or cultural resources located within the Project Area in such a way as to achieve a mutually acceptable balance between the development and provincial historic resource legislation and management requirement. Regarding the latter, emphasis is usually directed toward efforts to conserve and protect the resource. In accordance with these regulations (Government of Newfoundland and Labrador 1992), historic resources assessment and management for the Project required one or more of the following three stages.

1.3.1 Stage 1 Historic Resources Overview Assessment

A Stage 1 Historic Resources Overview Assessment (Stage 1 Assessment) is normally the initial step in the provincial historic resources assessment process and typically involves background research and, frequently, a preliminary field study. The Stage 1 Assessment is intended to serve as the basis for determining if any additional research is required under the Historic Resources Act (1985).

1.3.2 Stage 2 Detailed Impact Assessment

For many development projects, Stage 2 Assessment is the standard procedure following the Stage 1 Assessment and, in the majority of instances, involves a more detailed and extensive field study to gain a thorough understanding of the historic resources within a defined study area and any interactions that may result from the proposed development.

1.3.3 Stage 3 Recovery (Mitigation)

Stage 3 Assessment follows directly from previous assessment studies and may include a broad range of activities and mitigation measures, including site avoidance, capping (i.e. securing materials and features in such a way as to ensure their long-term integrity) or systematic data recovery / excavation. By acting upon results and recommendations of the previous stages of assessment, Stage 3 Assessment involves the effective, professional management of any historic resources that may be affected within the Project Area. In sum, the priority of historic resources
management is to protect resources and mitigate potentially adverse effects to reduce loss or disturbance of sites, objects or materials, and places of cultural and/or spiritual importance.

1.3.3.1 Mitigation

In the context of the Labrador component of the Project, where a broad range of archaeological sites of varying ages, functions and differing cultural origins have been identified and registered, three principal types of mitigation have been defined and approved by the PAO to ensure the necessary and appropriate degree of site information is recovered. The mitigation measures are summarized as:

- **Systematic Data Recovery (SDR)** involves the scientific and systematic excavation and recording of unavoidable historic resource losses using accepted data recovery techniques;
- **Alternative Field Recording (AFR)** involves photographic, video and illustrative coverage and, where indicated, collection, documentation and conservation of relevant site materials; and
- **Systematic Field Recording and Subsurface Sampling (SFR and SS)**, involves photographic, video and illustrative coverage of visible surface remains, excavation of testpits, collection, documentation and conservation of relevant site materials, and, where indicated, additional AFR or SDR.

1.4 2014 Historic Resources Assessment and Recovery Program

1.4.1 Permitting and Study Areas

The 2014 Historic Resources Management Program for the Lower Churchill Project (LCP) was undertaken under two Archaeological Investigation Permits issued by the Provincial Archaeology Office (PAO):

- Permit #14.36, which included Historic Resources Assessment and Management activities at the proposed electrode site at L’Anse au Diable, in the Strait of Belle Isle;
- Permit #14.39, which included Historic Resources Assessment and Management activities in the Churchill Valley, central Labrador; and
- Permit #14.51, which encompassed brief Stage 2 Assessment of proposed road infrastructure at Forteau Brook in Forteau, in the Strait of Belle Isle.

This Draft report deals strictly with the historic resources assessment and recovery program conducted in relation to reservoir preparation in the Churchill Valley, in 2014. (Permit #14.39). The results of assessment activities at L’Anse au Diable and Forteau in the Strait of Belle Isle are reported separately (Stantec 2015a; 2015b; 2015c).
INTRODUCTION
August 12, 2015

1.4.2 2014 Study Objectives

Previous Stage 1 and Stage 2 assessments along the Lower Churchill River have identified 23 registered archaeological sites within the proposed Muskrat Falls reservoir between Lower Brook and Gull Rapids. Although reservoir preparation activities (mechanical tree-felling) commenced within the reservoir area in 2013-2014, 50 m buffer zones were defined around these known sites and, within these buffers, the natural vegetation had been left standing.

Stage 3 mitigation is required at these sites before creation of the reservoir. Required mitigation varies according to site type: precontact and historic sites with subsurface remains require Systematic Data Recovery (SDR), consisting of conventional archaeological excavation, while historic sites composed of surface-visible remains and/or standing structures require Alternative Field Recording (AFR) by other means such as surface feature inventory, photography, and videography.

The objective of the 2014 Historic Resources Management program was to complete Stage 1 and 2 assessments and, where indicated, initiate Stage 3 SDR and Stage 3 AFR at any archaeological sites situated in the proposed Muskrat Falls reservoir area.

The work required in 2014 to achieve the objectives therefore included three principal elements:

- Following an archaeological training program to ensure that field teams were prepared to undertake both site delineation and mitigation work at Muskrat Falls, the completion of further Stage 2 assessment to completely delineate the sites and site loci which might need to be recovered;
- Stage 3 SDR for sites identified, including the processing and, where necessary, the stabilization, of cultural materials recovered; and
- Stage 3 AFR for sites identified.
INTRODUCTION
August 12, 2015

Figure 1-2 Churchill Valley Historic Resources Management Program, 2014
2.0 Approach and Methods

The methods employed for each assessment stage are summarized as follows.

2.1 Stage 1 Background Research

Extensive background research has been conducted for the entire Project Area, including the Churchill River Valley in central Labrador, the central interior south of Muskrat Falls, and the Strait of Belle Isle region in southern Labrador (see Thurlow et al. 1974; Tuck 1981; IED/JWEL 2000; JWEL/IELP 2001a; JWEL/IELP 2001b; JWEL/IELP 2001c; Minaskuat 2008; Stantec 2010a; 2010b, 2012).

The background research methodology employed in the present study closely followed that employed for the overall Project assessment and involved the review of previous archaeological research undertaken within and adjacent to the Study Areas, and of publically available historic, ethnohistoric and ethnographic literature.

Background research for the 2014 Stage 3 recovery program included further review of past archaeological research in central Labrador, including upper Lake Melville and the Churchill Valley (e.g. Fitzhugh 1972, JWEL/IELP 2001d, Schwarz 2004a, 2004b, Neilson 2006, 2010, 2011, 2013), as well as in neighbouring regions that have seen substantial archaeological research, such as the north-central Labrador Coast (e.g. Nagle 1978, Loring 1992) and Kamestastin (e.g. Jenkinson and Loring 2012), the Labrador side of the Strait of Belle Isle and the Côte-Nord of Québec (e.g. McGhee and Tuck 1975, Madden 1976, Pintal 1998), and the Caniapiscau / La Grande and Laforge regions of interior Québec (e.g. Denton 1989, Cérane Inc. 1995). Background research also included review of ethnohistoric and archival materials pertaining to Innu, Metis, and European occupations of the Churchill Valley during the historic period (e.g. Tanner 1947; Fitzhugh 1999; Mailhot 1997; Zimmerly 1975).

2.2 Stage 2 Field Assessment Methodology

Once identified through background research, potential testing locations were accessed by helicopter. As a first step, these locations were investigated by means of visual inspection to identify level, well-drained, habitable terrain for subsurface testing, and suitable locations were further investigated with subsurface shovel testing. Typically, testpits were excavated with shovel and trowel in two lines 5 m apart parallel to terrace edges at 5 m intervals. Backdirt was screened through ¼” mesh screens.

At newly-identified sites, shovel testing followed a "low impact" strategy, whereby testing was limited to the minimum needed to define, describe, and delimit historic and heritage resources. Additionally, artifact collection was kept to a minimum. Employing such methods eliminated unnecessary site disturbance until appropriate mitigation measures, including Stage 3
archaeological recovery if indicated, could be finalized in consultation with Nalcor and the PAO. Sites and testing locations were recorded with hand-held GPS, and photographic records and field notes were maintained. Sites and cultural materials were catalogued on PAO-compliant digital site and artifact record forms.

2.2.1 Archaeological and Contemporary Site Registration

In the province of Newfoundland and Labrador, archaeological sites (defined as physical evidence of land use pre-dating 1960) are recorded, inventoried and assigned numbers under the Borden System (the Canadian registry for archaeological materials) in accordance with the provincial Historic Resources Act (1985). As well, under current regulatory policy for Labrador, all material evidence of contemporary land use (defined as land use occurring within the past 50 years) is recorded, inventoried and assigned ethnographic numbers. Contemporary sites can include, for example, remains of campsites or tilts (i.e., small, rough-constructed cabins), or other physical evidence of hunting, fishing or trapping. Moreover, if distinct ‘cultural indicators’ are present, such as the manner in which a tent and/or stove was set or the type of trap used for harvesting a particular species, it is sometimes possible to determine the cultural affiliation of the find. A detailed recording of contemporary sites has value not only because such materials can serve as proxy indicators of archaeological potential, but because physical evidence of land use within the past 50 years, used in conjunction with written and/or oral information, can broaden a picture of land use patterns and activities within a region.

Though recorded by the PAO, contemporary sites are not assigned numbers under the Borden System, are not classified as archaeological sites, and are not normally the subject of Stage 2 or 3 mitigation measures. However, contemporary sites are inventoried in a database for ethnographic remains compiled by the PAO.

2.3 Stage 3 Recovery Program Methodology

The Stage 3 SDR of subsurface Precontact and Historic period archaeological sites was completed by teams of field technicians, each supervised by a qualified archaeologist. Excavations consisted of 2 m x 2 m units, separated by 20 cm-wide baulks (i.e., unexcavated portions of units) and excavated by both natural and cultural layers. This pattern of excavation allowed sufficient areas to be uncovered so that spatial patterns could be discerned, while the continuous baulks enabled stratigraphic control to be maintained at all times. This method is preferred over trenching or checkerboard excavation, since site significance depends in part on the presence or absence of significant archaeological features, such as hearths, and broad simultaneous areal exposure is the most effective way of identifying and recording these in deposits of anticipated simple stratigraphy.

The first phase of Stage 3 SDR consisted of manual tree-felling to clear the sites of vegetation. Although reservoir preparation activities (mechanical tree-felling) had already commenced within the Muskrat Falls reservoir area, 50 m buffer zones had been defined around these known
sides and, within these buffers, the natural vegetation had been left standing. Prior to excavation, sites scheduled for Stage 3 SDR were revisited, relocated, and perimeter-marked. Trees and brush present within the excavation areas were manually felled using chainsaws, and then stacked or discarded in accordance with Project protocols and with the provisions of the cutting and operating permits. Manual tree-felling was also employed to create or enlarge helicopter landing pads to provide site access. Tree-felling teams included two wilderness first-aiders per chainsaw operator, and all required emergency firefighting equipment. Cutting and clearing proceeded in alternating shifts to ensure that clearing personnel did not operate in proximity to cutting personnel. For further cutting during the excavation process, battery- and generator-powered reciprocating saws, as well as hand saws and shears, were employed during the excavation process to remove roots and stumps. This was followed by laying out the site grid. All excavation units were excavated by trowel to sterile. Point provenience was recorded in three dimensions for all lithic artifacts, including debitage, and also for bone, soil, and the charcoal samples retrieved for subsequent carbon dating. Backdirt was screened during excavation, using ¼" mesh. Recording methods included field notes and a digital photographic record of the excavation, features and soil profiles. Excavation areas and cultural features were mapped and representative baulks and sidewall profiles drawn at a scale of 1:10. Sites and cultural materials were catalogued on PAO-compliant digital site and artifact record forms. Excavation control points were recorded using high-precision GPS with < 5 cm accuracy. At one large site, FgCg-01, a total station was also employed to plot approximately 100 test pits and surface-visible features. The test pits were positioned strategically around the site to help determine the maximum extent of the precontact-period cultural materials as well as any nineteenth century (or earlier) features and artifacts. The majority of depth measurements recorded for artifacts at FgCg-01 were recorded using a surveyor’s level rather than line-levels, which over long distances can prove inaccurate.

At most sites, excavation commenced in 2014 was completed in 2014, but at one large site, FgCg-01, features were exposed in areal excavation for subsequent excavation and removal in 2015. At this site, the excavation area was winterized by covering exposed features in a layer of geotextile and then a layer of loose sand.

Progress reports summarizing key findings were submitted to Nalcor and the PAO on a weekly basis over the course of the 2013 Historic and Heritage Resources Assessment and Recovery Field Program.

2.4 Stage 3 Alternative Field Recording Methodology

Historic tilts, middens and cabin sites were mitigated by means of data recovery and mitigation approaches applicable to sites that have no or few subsurface remains. These approaches included photographic and video recording, as well as documentation of surface-visible site artifacts and limited collection of significant objects.
2.5 Artifact Processing and Conservation Methodology

Most stages of artifact processing were undertaken at the Stantec office in Goose Bay. The artifact processing methods were designed by the Project Conservator, who also laid out suitable work and storage spaces and designed a Project-specific artifact specimen record form. Artifacts were returned from the field daily in rigid containers, sorted by raw material, counted, catalogued, and, in the case of lithic debitage, were placed in labelled Ziploc® bags. Finished artifacts were placed in rigid plastic boxes, with foam support as required. Lithic materials were not wet-washed. One full-time cataloguer, trained by the Project Conservator, served as cataloguing and artifact processing team lead concurrently with excavation, supported by two assistants. The cataloguing and artifact processing team lead was solely responsible for assigning accession numbers during the cataloguing process.

Because of the rate and volume of material recovered, cataloguing was not completed until February 2015, at which time the 2014 collection was packaged according to the requirements of the Project Conservator and shipped to a dedicated space in the Stantec Offices on Torbay Road, St. John’s, where the Project Conservator took custody of the collection and arranged appropriate and secure storage. Subsequent analysis by Project archaeologists included reviewing both the collection and the catalogue in order to:

- ensure correct attribution of raw material types;
- correct any Type 1 errors (debitage incorrectly identified as tools);
- correct any Type 2 errors (tools incorrectly identified as debitage);
- correct any provenience errors;
- write detailed artifact descriptions for finished artifacts; and
- photograph artifacts for the final report (this document).

In 2012 and 2013, the Historic Resources Management Program for the Lower Churchill Project primarily recovered lithic objects that are relatively stable and require little stabilization or conservation. However, it was anticipated that excavations in 2014, particularly at FgCg-01, would lead to the recovery of a wider variety of materials, including stable and unstable glass, ceramics/pottery, ferrous (iron) and non-ferrous (copper/copper alloy, lead, white metal) metals, lithic, organic (wood, leather, textile, fiber, bone/ivory), and composite materials. Consequently, the 2014 Historic Resources Management Program included planning for conservation support during artifact processing, entailing:

- general training (handling, lifting, packing, and transport procedures);
- chemical testing;
- the implementation of block-lifts as required; and
coordinating conservation-related activities (stabilization in Goose Bay, transport to St. John’s, and conservation at The Rooms Provincial Museum Conservation Laboratory in St. John’s, NL.

Following training (see Section 2.6 below), planning included the development by the Project Conservator of stabilization and block-lifting kits for use in the field, as well as pH testing of soils at FgCg-01, FgCg-05, and FgCg-06 to support treatment of organic materials, and chloride testing of metal object samples from FgCg-01 to determine the scope of treatment required for iron artifacts. The results of this testing indicated the presence of mildly acidic soils, and of relatively low chloride levels in the metal objects, allowing for the possibility of dry stabilization pending transfer to, and further treatment at, the Conservation Laboratory.

Conservation planning envisioned a continuous process from artifact intake from the field to the processing facilities where prioritization of collections activities would be made between those artifacts requiring remedial or specialized treatment (High priority), and those considered stable (Lower priority). Those requiring remedial or specialized treatment were to be addressed first; stabilized, catalogued, provided support and specialized enclosures, packed and sent to St. John’s immediately for treatment. Following this, activities were to be directed at continuing the collections requirements for stable artifacts: basic cleaning, labelling, cataloguing, data entry, monitoring, and eventual packing for shipment.

Relatively little unstable material was recovered in 2014, although recovery of unstable materials is still anticipated in 2015. Material transferred to the Conservation Laboratory consist predominantly of 15 - 20 metal fragments that will be hot-washed for removal of existing chlorides, and three glove fragments that require cleaning and stabilization.

2.6 Training Program Methodology

A cadre of personnel who have acquired training and experience in archaeological excavation and cataloguing comprised part of the field team. These individuals received one day of refresher training. One artifact processing specialist (along with two Field Team Leads) also received a two-day training course in field stabilization, block-lifting, and conservation of artifacts delivered by the Canadian Conservation Institute, and an artifact processing orientation delivered by the Project Conservator. In addition, a number of local persons with experience in environmental science were selected to participate in fieldwork, and these were trained through the one-day course, as well on the job, under the supervision of the Team Leads, and in the company of mentors with prior field experience.

2.7 Project Personnel

The 2014 historic resources assessment and recovery program was conducted by Stassinu Stantec. Project personnel included a Senior Project Manager, Assistant Project Manager, Technical and Field Leads, Field Technicians, Data Analysts and Report Writers, and GIS
Specialists. All principal project personnel have in-depth knowledge and experience in their fields of expertise and a broad general knowledge of the work conducted by other experts in related areas of the program. Brief biographical statements for the four principal archeological team members are provided below.

Fred Schwarz, Ph.D. (Archaeologist), holds a B.A. in Anthropology from Memorial University, an M.A. in Archaeology from the University of Calgary and a Ph.D. in Archaeology from the University of Cambridge. He specializes in the archaeology and pre-history of the Newfoundland and Labrador interior. His research interests include predictive modelling and field investigation of Precontact interior settlement in Newfoundland and Labrador, settlement patterns and the interpretation of interior adaptations and culture history in the region. Dr. Schwarz has been directing field research projects in Newfoundland and Labrador, Nova Scotia, and Latin America for 22 years. His work in Labrador has included scientific management of the Stage 1 Historic Resources Overview Assessment of the Churchill River Power Project from 1998 to 2006, which included a series of three training programs for Innu researchers. In addition, he has worked on numerous projects with and for Innu organizations and companies. In 1996, he directed the Regional Context Component of the Voisey's Bay Historic Resources Impact Assessment for the Mushuau Innu Band Council (in conjunction with the Labrador Inuit Association and Jacques Whitford). In 1997, he served as field consultant to the Innu History Commemoration Project for the Department of Canadian Heritage and directed the Archaeological Resource Inventory of Akamiuapiksh Proposed National Park for Innu Nation and Parks Canada, eventually preparing the Human History Study of the proposed park in 2001. Since that time, he has also completed major assessments for IELP, including the Historic Resources Study of Phase III of the Trans Labrador Highway, as well as assessments and research in the town of Sheshatshiu for the Sheshatshiu Innu Band Council. More recently, since 2006 he has undertaken several projects with Minaskuat Limited Partnership and Stantec, including archaeological potential mapping and field assessment of the LabMag Iron Ore project in western Labrador, and scientific management of historic resources assessment of the Lower Churchill Hydroelectric Generation Project and the Labrador – Island Transmission Link. Dr. Schwarz held the Archaeological Investigation Permit issued by the Provincial Archaeology Office (PAO) for the Lower Churchill Project Historic Resources Management programs in 2014. Dr. Schwarz co-directed the background and field research programs, and co-authored the required reporting on the work.

Roy Skanes, B.A., M.Phil (Archaeologist), has worked as a Consulting Archaeologist with Stantec Consulting Limited and its predecessor Jacques Whitford Environment Limited for the past 21 years and has been involved in archaeological and related background research since 1978. His research focus has been primarily on historical archaeology, with a large majority of his work directed toward study of habitation sites and fortifications dating to the seventeenth, eighteenth and nineteenth centuries. Mr. Skanes holds a B.A. in Anthropology (Archaeology major and French minor) from Memorial University of Newfoundland and a Masters degree in Modern History (specialization archaeology) from the University of St. Andrews, Scotland. He has worked extensively in Newfoundland and Labrador, Nova Scotia, Prince Edward Island, New Brunswick,
LOWER CHURCHILL HYDROELECTRIC DEVELOPMENT PROJECT
2014 HISTORIC RESOURCES ASSESSMENT AND RECOVERY PROGRAM

APPROACH AND METHODS
August 12, 2015

Québec, Ontario and Alberta. Over the past 20 years, he has directed and/or acted as Team Lead for many Historic and Heritage Resources assessments for a broad range of development projects on the Island and in Labrador, including assessments and excavations at Voisey’s Bay, Labrador, within the corridor of the Trans Labrador Highway from Red Bay to Cartwright and from Cartwright Junction to Goose Bay, at five locations proposed for construction of short range radar sites in central and northern Labrador, at a number of locations in the Churchill River valley and west and southwest Labrador for the proposed lower Churchill development, at in western Labrador for a number of proposed mining projects. He has also completed several Stage 1 Historic Resources Overview Assessments (Stage 1 HROA) in the Labrador Straits region and on the Island for road and power-line projects, including the proposed HVdc transmission corridor from Muskrat Falls in Labrador to Soldiers Pond on the Avalon Peninsula. He has also worked extensively with Aboriginal groups carrying out field research in Labrador. Mr. Skanes co-directed the background and field research, and co-authored the required reporting on the work.

Corey Hutchings, B.A., M.A. (Archaeologist), has worked in cultural resource management for the past five years and participated in additional archaeological and heritage research since 2002. Mr. Hutchings holds a B.A. in anthropology and a Masters degree in archaeology from Memorial University. His research interests have primarily been the archaeology of the Arctic’s prehistoric people with a focus on the Labrador Archaic. He has participated in various cultural resource management and academic research projects on the Island of Newfoundland, Labrador, Baffin Island and on the Aleutian Islands. Mr. Hutchings’ work in Labrador has included multiple years as a field supervisor for the Porcupine Strand Archaeology Project based in Cartwright Labrador. Over 2011 and 2012 he worked with local people in assessment and mitigation for the Baffinland Iron Ore Company. This work consisted of assessments and excavation of sites that fell in the footprint of the ore loading area as well as the route of a 150km railway. He has had multiple archaeology reports approved by the Newfoundland Provincial Archaeology office, the Alaskan Dept. of the Interior and most recently an ethnographic report approved by the Nunatsiavut Government. Mr. Hutchings co-directed the background and field research for the 2014 Historic Resources Management Program, and co-authored the required reporting on this work.

Miki Lee, (Conservator) is an associate of Stantec Consulting Ltd. with over 15 years’ experience in conservation treatment and preservation consulting for an extensive range of municipal, provincial and federal institutions. In that time, Ms. Lee has trained and directed teams in both archaeological and historical conservation treatment, collections management, and preventive conservation. Accredited in 2007, Ms. Lee’s areas of specialty include preventive conservation, archaeology, archives, mixed collections, collections management, and education. Ms. Lee served as Project Conservator, designing the artifact processing, shipping and conservation procedures and establishing the artifact processing facilities for the Project.

Table 2.1 lists the complete historic resources team as well as their identified roles.
Table 2.1 2014 Historic Resources Assessment and Recovery Personnel

<table>
<thead>
<tr>
<th>Role</th>
<th>Personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Management</td>
<td>Diane Ingraham (Senior Project Manager), Wayne Tucker (Assistant Project Manager), Robin Power (Project Controls)</td>
</tr>
<tr>
<td>Technical and Field Archaeology Leads</td>
<td>Fred Schwarz, Roy Skanes, Corey Hutchings</td>
</tr>
<tr>
<td>Project Conservator</td>
<td>Miki Lee</td>
</tr>
<tr>
<td>Manual Tree-Felling - Team Leads and Wilderness First-Aiders</td>
<td>Stacey Camus, Caroline Hong, Tina Newbury, Tony Parr, Alissa Tobin, Daniel Windeler</td>
</tr>
<tr>
<td>Data Analysis and Report Preparation</td>
<td>Fred Schwarz, Roy Skanes, Corey Hutchings</td>
</tr>
<tr>
<td>Senior Report Review</td>
<td>Colin Varley</td>
</tr>
<tr>
<td>Field Technicians</td>
<td>Victoria Allen, Randy Best, Charlene Clarke, Margie Clark, Marjorie Flowers, Zak Hajiaoui, Jean-Luc Hervieux, Trish Layden, Jacqueline Melindy, Jessica Melindy, Dierdre Park, Mackay Paul, Matshiu Penashue, Taylor Pilgrim, Desmond Rich, David Sheppard, Alissa Tobin, Daniel Windeler</td>
</tr>
<tr>
<td>Health, Safety, Environment and Quality</td>
<td>Caroline Hong (Co-ordinator), Doug Schaefer</td>
</tr>
<tr>
<td>Artifact Cataloging and Packaging</td>
<td>Charlene Clark, Margie Clarke, Angela Dunphy, Mary Ann Aylward, Barry Keough</td>
</tr>
<tr>
<td>Transportation of Field Crew</td>
<td>Val Gaulton</td>
</tr>
<tr>
<td>GIS</td>
<td>Ryan Melanson, Ryan Sutcliffe, Chris Shupe, Heather Ward, Tony Parr, Kelly Taylor</td>
</tr>
<tr>
<td>Office Support</td>
<td>Mary Ann Aylward, Kim Chaytor, Nicole Dalton, Angela Dunphy, Victoria Greeley, Barry Keough, Lois Strangemore, Wayne Tucker,</td>
</tr>
</tbody>
</table>
3.0 STAGE 2 ASSESSMENT RESULTS

In 2014, Stage 2 Assessment was undertaken at three distinct locations in the Churchill Valley. One of these locations (Tepiteu-shipiss) was identified in 2013 as extending beyond the area previously mapped for archaeological potential, while the other two locations consisted of known sites at which further testing was required to determine the presence or absence of subsurface remains.

Subsurface testing activities undertaken at sites excavated in 2014 are discussed separately in Section 4.0.
Figure 3-1 2014 Stage 2 Assessment Locations in the Churchill Valley
3.1 Stage 2 Assessment Field Research Results

3.1.1 Tepiteu-shipiss

In 2013, Stage 1 Assessment was undertaken for the Muskrat Falls reservoir area, since Nalcor proposed to commence reservoir preparation activities within the reservoir area in 2013 (Stantec 2013a, 2013b); the results may be summarized as follows.

In several locations, it was determined that proposed reservoir clearing would extend beyond the area previously-mapped for archaeological potential. The majority are expanses of terrace interior (Zone Type 08) of low potential, or are minor watercourses whose high-potential locations lie at their mouths and have already been assessed. Sections of two major tributaries to the Churchill River had not previously been mapped for archaeological potential, and had not previously been assessed:

- Nearly 2 km of Tepiteu-shipiss (this large tributary on the south side of the Churchill River is named “Upper Brook” on NTS mapsheet 13F/02; Tepiteu-shipiss is the Innu toponym for this stream) and its flanking terrace system lies within the proposed reservoir clearance area but outside previous archaeological potential mapping. The terrace systems west of the river mouth had been extensively tested, as had the mouth of the river. The river course above the mouth had not been assessed previously.

- Approximately 1 km of Lower Brook, between the confluence with the Churchill and extending past the presently-proposed transmission line corridor, was not included in previous archaeological potential mapping and had not been assessed previously.

In both instances, further Stage 2 Assessment was recommended. Stage 2 assessment on Lower Brook, adjacent to the HVac ROW crossing, was undertaken in 2013. Stage 2 assessment on “Upper Brook,” on the south side of the Churchill, was deferred to 2014.

Helicopter overflight along Tepiteu-shipiss in 2014 included recording of still photographs and continuous video coverage to assist in identifying potential testing locations. Based on the results of helicopter overflight, subsurface testing was undertaken at two locations on the lower reaches of Tepiteu-shipiss.

3.1.1.1 Testing Location 2014-RES-01

Twenty testpits were excavated in two rows along the edge of the stream bank at a point of land situated at the intersection of the main stem of Tepiteu-shipiss and a backwater channel. Mechanical tree-felling had previously been completed in this area, but had not affected the underlying sediments, which revealed undisturbed soil development horizons, approximately 5 cm of mulch overlying 5-8 cm of duff and a 2-4 cm silty A Horizon overlying a silty but somewhat friable B Horizon. The results of testing were negative.
Twenty-two testpits were excavated in two rows along the edge of an elevated terrace fragment preserved inside a bend on the south side of Tepiteu-shipiss, a kilometer upstream from Testing Location 2014-RES-01. Again, mechanical tree-felling had previously been completed in this area, but had not affected the underlying sediments. Testing revealed light, sandy soils with strong soil development horizons, particularly along the southern portion of the transect. In general, mulch overlay a very thick (15-20 cm) duff, then a 2-5 cm silty-sand A Horizon; the B Horizon was a hardpan in places. The results of testing were negative.
At FgCh-04, subsurface testing was undertaken to determine the location and the limits of the site prior to manual tree-felling. The site was originally identified in 2006 (Minaskuat 2008), when two pink quartzite flakes were noted on the beach, at the foot of a steep, narrow ridge extending between the shoreline of Gull Lake and the bend of a tributary brook. Testing in 2006 failed to identify a source-deposit for the precontact material. Further testing was therefore undertaken in 2014 in an effort to locate and delineate the source deposit.
3.1.2.1 Testing Location 2014-RES-03

Twelve test pits were excavated along the crest of the narrow ridge, which measured only 1-2 m wide along the crest, along the slope fronting the ridge crest, and along the margins of the high terrace from which the ridge descends. Test pits from 2006 were visible and the test pits excavated in 2014 were placed in the intervals between them. In addition, two recent tree-throws were examined for cultural material. Further surface inspection along the beach led to the recovery of one additional piece of quartzite debitage, but all test pits along the ridge and terrace top were negative.
3.1.3 Hidden Cabin (13F/03 Ethno 39)

A previously-unrecorded collapsed cabin structure was reported in 2014 in the south side of the Churchill River upstream from the mouth of Edward’s Brook. This site, designated 13F/03 Ethno 39, is discussed in more detail in Section 5.0. Immediately to the southwest of this cabin, along a trail, is a small area that appears to have been cleared at one time. Nalcor’s environmental monitor requested that this former clearing be tested in order to determine whether earlier historic remains were present.

3.1.3.1 Testing Location 2014-RES-04

Thirteen test pits were excavated in the small irregular clearings 15 m west of the collapsed cabin structure at 13F/03 Ethno 39. These revealed relatively thin duff layers (5-8 cm) overlying a very thin (1-2 cm) silty A Horizon which in turn overlay a friable tan-brown B Horizon. The results of testing were negative.
3.2 Summary

Stage 2 assessment at two locations on the lower reaches of Tepiteu-shipiss appears to confirm that this section of Tepiteu-shipiss has at most moderate, and occasionally low, potential for archaeological remains. Stage 2 assessment is complete, and no further work required.

At FgCh-04, it appears that any precontact site which may once have been present here has since been deflated by erosion along the lakeshore, and along the river bend to the south. No location suitable (or feasible) for recovery work was identified along the ridgetop, and it appears that no further cutting or recovery work is required at this location.

At 13F/03 Ethno 39, no earlier remains appear to be present. Stage 2 assessment is complete, and no further work is required.
4.0 CHURCHILL VALLEY STAGE 3 RECOVERY PROGRAM (SDR) RESULTS

The 2014 Stage 3 Recovery Program (SDR) in the Churchill Valley commenced in July of 2014, when sites slated for SDR were revisited. The effectiveness of site buffering was assessed. Site-center markings, where these had survived, were located and site perimeters were marked in preparation for manual tree-felling. At two sites, potential helicopter landing pads were identified in order to ensure safe site access, and these were marked, cut, and cleared. At this stage, intrusive methods (i.e. subsurface testing) were not employed to relocate sites, nor was manual tree-felling undertaken within site buffers. On August 24, 2014, following receipt of Archaeological Investigation Permit 14.39, manual tree-felling commenced, and continued intermittently through the season. Excavation commenced at selected sites as clearing was completed. Stage 3 SDR was undertaken at seven sites in 2014, all but one of them situated in the Sandy Banks area, midway between Musk Rat Falls and Gull Lake (see Photo 5). Recovery work was completed at five of these sites, while the remaining two will see further recovery work in 2015. The results of the 2014 Stage 3 Recovery Program are described in the following sections.

Photo 5 View Southwest along the Churchill River, Showing the Location of the Three Largest Sites in the Sandy Banks Area (FgCg-01, FgCg-05, and FgCg-06)
4.1 Stage 1 Background Research Results

Background research for Stage 3 SDR in 2014 focused on review of literature pertaining to three types of archaeological occupation likely to be encountered during excavation:

- precontact occupation by Aboriginal inhabitants of Central Labrador;
- historic fur-trade-related European and Settler occupation, particularly that associated with the Hudson’s Bay Company (HBC) outposts in the Churchill Valley; and
- historic Innu occupation.

Background research on the history of Settler trapping post-dating the closure of the HBC outposts in the Churchill Valley was also undertaken, but this pertains primarily to the sites investigated by means of Stage 3 AFR, and these background research results are therefore discussed in Section 5.0 below.

4.1.1 The Precontact Period: Recovery Results from Muskrat Falls

The archaeology of the precontact period in Labrador-Ungava, and in central Labrador in particular, has been reviewed in detail elsewhere (Stantec 2014a; 2014b). The most relevant recent research results are associated with the archaeological recovery program at Muskrat Falls in 2012 and 2013 (Stantec 2014a; 2014b). This program has led to the recovery of 23 precontact archaeological sites along the portage trail on the south side of Muskrat Falls, and a further eight sites with precontact components on the North Spur. These sites date to the Intermediate and Late Precontact periods in central Labrador prehistory.

Excavations on the south side of Muskrat Falls led to the recovery of evidence for numerous campsites, including diffuse round and oval cobble hearths, linear hearth features, along with boulder-filled pit features and linear boulder alignments which may reflect the manufacture of canoes. Associated artifacts included a range of lithic tools manufactured from a variety of raw materials, including rhyolite, chert, and quartzite, along with small quantities of quartz, Ramah, and fine-grained exotic cherts. Several of these sites also yielded small assemblages of Aboriginal grit-tempered ceramics, rarely found in Labrador archaeological sites. The complex of sites is interpreted as a major gathering site and staging area for seasonal movements both upstream and downstream along the Churchill River in spring and fall.

Excavations on the North Spur revealed further evidence for precontact occupation, although well-defined hearth features were lacking. Lithic assemblages at the North Spur sites included expedient tools and evidence for intensive lithic reduction and preparation of cores and preforms; in contrast with the sites on the south side, the North Spur lithic assemblages consisted almost entirely of local quartzite.
4.1.2 The Historic Period: Hudson’s Bay Company (HBC) and the Fur Trade

The history of the fur trade in south/central Labrador and adjacent parts of Quebec has been presented in relative detail elsewhere (IED/JWEL 2000) but may be summarized briefly as follows.

4.1.2.1 Historical Evidence for the HBC Posts in the Churchill Valley

Following initial contact, the European presence in Labrador gradually increased throughout the seventeenth century, particularly along the coast, with the establishment of seigneuries, trade concessions, fishing stations, and fortifications. The French had been trading with Innu at Tadoussac on the St. Lawrence River since 1600, and trade eventually expanded into the northern interior, with the establishment of a post on Ashuanipi Lake by Louis Jolliet ca. 1696 (White 1926).

In 1702, the Governor of New France granted one of the earliest and largest trading concessions in Labrador to Sirur Augustin le Gardeur de Courtemanche. This concession extended from the Kegaska River (near Anticosti Island) to the Kesessaskion or “Kessessaskiou” River (now the Churchill River). Although Courtemanche appears to have done little to exploit the northermost portions of his concession, he did survey many of the bays and rivers within his holdings, including Hamilton Inlet, and noted the presence of Inuit (who were already very familiar with French traders and European goods), and an “interior…tribe of Indians who had not as yet come into contact with the French” (Zimmerly 1975: 36-37).

After Courtemanche’s death in 1717, his concession was progressively reduced and granted to other merchants. In 1743 Louis Fornel established the first trading post in Lake Melville, at North West River. Although there is no record of French trading in the area prior to that time, acquisition of French trade items by local Innu groups had undoubtedly occurred through interaction with traders along the Lower North Shore of the St. Lawrence River, where posts had been established at least a century earlier. Thus, while Fornel’s North West River establishment may not have broadened the range of materials available to Innu, the presence of a post in Hamilton Inlet certainly afforded a greater opportunity for them to acquire European goods.

Through much of the eighteenth century, the HBC had been trading at the Albany and Eastmain river posts in southeastern Hudson Bay. After the British conquest of 1763, the former French posts within the Quebec/Labrador Peninsula (referred to as the “King’s Posts”) were operated by various lessees. From 1802 to 1821, the King’s Posts were leased to the North West Company, but in 1831, the lessee became the HBC, which had incorporated the North West Company. The HBC eventually bought all posts located to the east of the Moisie River, and thus began the expansion of HBC’s trading operations in Ungava Bay and Hamilton Inlet (Dufour 1996).

In 1836, the HBC established its first post (initially named Fort Smith but later changed to “North West River House”) alongside D.R. Steward’s competing enterprise, purchasing the latter’s establishments in Hamilton Inlet in April of 1837. During that time, the HBC encountered
considerable competition from smaller traders in the Hamilton Inlet region, including Brownson at Rigolette, the Bird establishment (based in southern Labrador) but with posts at Kenemich River and Cuff Harbour managed by J. T. Cox of Newfoundland, and the Henley and Lemon establishments situated near the mouth of Hamilton Inlet (White 1926; Dufour 1996). The decision to establish a post at North West River was in part an attempt by the company to capture some if not all of the business from the several private traders already set-up there, as well as to serve as an overland supply base for Fort Chimo, which could not be supplied successfully from the posts in Hudson Bay, nor by sea (Davies and Johnson 1963).

The first factor (post manager) at the HBC’s North West River post, Simon McGillivray, mentioned in his journal from 1836 that 15 Innu families resided in the North West River area, some of whom were occasionally employed at the post as guides and to manufacture snowshoes and canoes. Other references to Innu traders by McGillivray suggest that several Innu groups from the Mingan area on the St. Lawrence River had supplied the North West River post with furs during its initial year of operation. Mention is also made of Naskapi from the interior, as well as a group from Michikamau Lake, who had travelled 13 days through winter conditions to reach the post. Reference is also made to Innu traders arriving and departing North West River via the Churchill River, some of whom had camped a day's march from the post. McGillivray also expressed considerable concern over the Innu propensity for personal trade with other Innu and Inuit while in the employment of the larger trade establishments in the area (Zimmerly 1975:61).

As the HBC’s trade in the Hamilton Inlet area expanded during the nineteenth century, other posts were established toward the western interior on Churchill River and further afield, including Gull Island Post (1841-1842), Winokapau Post (1863-1869 and 1873-1874; however, this post may have been in operation until 1876 and may have begun operating as early as 1844), and Sandy Banks Post (situated approximately 20 km west of the Muskrat Falls portage, two days march from North West River House). The establishment of the Lake Winokapau post appears to have been an attempt by the HBC to capture trade that might otherwise have gone to private traders. Moreover, it was recognized at the time that posts should be established in the interior closer to the Innu who, subsisting primarily on the interior caribou herds, would not readily trap fur-bearers if it meant losing access to this critical resource, and who preferred travelling south to trading posts in the Gulf of St. Lawrence where they could at least obtain suitable birch-bark for canoe manufacture and repair (Davies and Johnson 1963).

It is difficult to determine with certainty from the available records whether or not Innu customarily camped close to (or directly at) the HBC outposts on the Churchill River while engaged in trade and other activities. However, Père Babel, a Roman Catholic priest stationed in Betsiamites, made several trips in the latter half of the nineteenth century to visit the Innu between North West River and Lake Winokapau. Notations from his 1866 journal may help shed light on this question. During his overland trip from Mingan, Babel arrived at Fort Winokapau on August 13 (well after spring breakup), after nearly a month's journeying from Mingan, only to find that the HBC personnel and Innu who had been camped there (apparently waiting for Babel)
had departed for North West River: it is likely they left four or six weeks earlier. In any event, Babel noted in his journal from that time that:

... The clerk and all the Indians had gone down to the Bay [Lake Melville] with their barges to bring back their provisions and other effects [presumably for the following winter]. The Indians, wearied of waiting for their missionary, and believing themselves again deceived, had left, and I only found their encampments. According to their dimensions, there must have been about a hundred Indians here...” (Babel’s 1866 journal, cited in IED/J WEL 2000)

While his notation (and use of the term “I only found their encampments”) is not in any way conclusive, it could suggest that the Innu were camped in the vicinity of, but not directly at, the post. This question is of relative importance, as it could help shed light on the archaeological features investigated in the Sandy Banks area in 2014.

Primary HBC records housed at their archives in Winnipeg, reviewed in 1998 as part of that year’s historic resources assessment (IED/J WEL 2000) indicate that Sandy Banks Post was operated intermittingly and seasonally for a period of approximately 39 years between the 1830s and late 1870s, although its two principal periods of operation appear to have been between 1841-1845 and 1876-1877 ((HBC, B153/a/1/38d: cited in JWEL/IELP 2001a: 30-32). Sandy Banks Post, which was also responsible for the smaller outpost at Gull Island, traded primarily with Innu from both the North West River area and the Lower North Shore of the St. Lawrence River. Evidence for this is provided through a reference from George McKenzie, who wrote to William Nourse on April 26, 1842, stating that:

Except Ashnii and his two brothers, Witnaw, Antoine’s family, Espitau and young Mistanapesh and brother, are the only natives of this place or Bay, all the others are natives either of 7 Islands, Mingan or Masquaro. Antoine was originally an interior Indian, but for many years belonged to Mingan (North West River Post Journal HBC B.153/c/l; cited in IED/J WEL 2000: 152).

The factors assigned to Sandy Banks included George McKenzie (1841-1842) and Donald Henderson (1842-1844), while James Lawson, Apprentice Clerk from North West River, operated Sandy Banks Post during the period 1876-1877. During its periods of operation, Sandy Banks Post was considered an outpost of North West River post (just as Winokapau Post later became). Sources (see JWEL/IELP 2001a: 30) also indicate that the HBC employees assigned to Sandy Banks and other trading posts from that period on the Churchill River were responsible for maintaining a series of traplines or “paths”, and for trading with and supplying Innu who made periodic stops to trade furs, fresh caribou meat and hides. Trade items provided to trappers included blankets, cloth, flannel, tobacco, ammunition and trapping equipment as well as food supplies of flour, biscuits, dried peas, commeal, and pickled pork and beef. The goods traded and received at Sandy Banks were transported to and from North West River each year with the help of Innu crews using flat-bottomed river vessels (flats) and canoes. Historic records (e.g. HBC,
B.153/a/24/6d: cited in JWEL/IELP 2001a: 31-32) also show that in the spring of 1875, nearing the post’s final days of operation, a new “store” (storage building) was scheduled for construction and “the existing house” was to be repaired. In 1894, geologist A.P. Low stopped at Sandy Banks and later described the location as being situated on the north side of Churchill River, where the clearing cut out for the former post was marked by a new growth of birch trees (Low 1896; cited in IED/JWEL 2000). It is noteworthy that in Low’s description of Sandy Banks, only some 20 years after the post ceased operation, no mention is made of buildings or any other standing structures, suggesting that they had been dismantled and removed, with the materials recycled elsewhere, or they had burned, possibly as a result of a forest-fire.

The annual routine for the 15 - 20 employees of the HBC was described by Davies (1843) for the years 1839-41. By mid-September, crews were sent to their winter quarters, typically in parties of two, with the supplies needed to trap and hunt until spring break-up, which usually occurred in early-mid June. Thus, the HBC servants frequently wintere in the deep interior in relative isolation for some eight or nine months of the year. However, while it was by no means the norm, periodically family members of company personnel did travel into the country and spend winters there. For example, from the fall of 1866 until March 1873, the Sandy Banks post was operated during the trapping season by Henry Hay and his family (JWEL/IELP 2001a: 31). A reference from 1866 states that “…Bakie and Wm Scott left [NWR] for Muskrat Island and Hay and his daughter [age not mentioned] for Sandy Banks.” Other similar notations in the North West River journals indicate that Hay’s daughter may have spent as many as three winters in the country at Sandy Banks post with her father (HBC document BJ §/a/18, 1866-1867, cited in JWEL/IELP 2001a: Appendix A). Following winters in the interior, HBC employees would net salmon at river-mouths and fish for cod until the end of summer.

The above described seasonal-round of the HBC employees in the mid-nineteenth century would appear to be in contrast to the Settlers, who remained closer to their families in Lake Melville. It has been suggested that in the late nineteenth and twentieth centuries, as Settlers increasingly became involved in trapping (see Section 5.1 below), they adopted a compromise seasonal round, whereby men would travel into the country without their families, but stay there for only four to six months at a time (Zimmerly 1975: 77 - 78).

In the latter half of the nineteenth century, as the fur trade in south/central Labrador reached its peak, the Innu were becoming increasingly drawn into the trade. By the end of the century, the Innu were abandoning the Churchill River as a primary travel route, as more and more Innu chose to favor the growing mission at Sept-Îles, and either left the Lake Melville area altogether or came to trade at North West River by other routes. At the same time, Settler trappers from western Lake Melville came increasingly to encroach on the trapping areas along the Churchill River. Settlers were Europeans associated with the seasonal commercial fisheries or, in many cases, were themselves former HBC employees (Zimmerly 1975). Once the coastal fishing finished in the fall, many young men chose to over-winter in Labrador to hunt seals, catch salmon, repair fishing and trapping gear, trap furs and construct boats. Permanent settlement by
Europeans, particularly of English descent, eventually led to intermarriage with the local Aboriginal population, particularly Inuit (Kennedy 1995). The causal connection between the decline of Innu settlement on the Churchill River and the rise of Settler trapping in the area is not entirely clear. Tanner (1947) indicates that Settler encroachments were driving the Innu from traditional trapping areas, not without conflict. However, Mailhot’s discussion of the issue implies that the Innu had their own motives for abandoning the Churchill River, and that the Settler encroachment was simply a consequence (Mailhot 1997: 27). In any event, by the early twentieth century, the Churchill River and valley was increasingly a trapping area dominated by Settlers from western Lake Melville.

4.1.2.2 Archaeological Evidence for the HBC Posts in the Churchill Valley

Previous archaeological research into the HBC posts of central Labrador has been limited. In 1968, Fitzhugh recorded surface-visible structural remains (cellars and foundations), and historic artifacts, including kaolin tobacco pipe fragments and gunflints at FJCa-35, related to the main North West River post (Fitzhugh 1972: 277), but did not undertake significant testing or excavation. Further upstream on the Naskaupi drainage, he also noted and tested a large Innu campsite at Red Wine Portage (FlCg-01), which may have been associated with a former HBC outpost near the mouth of the Naskaupi River, above the head of Grand Lake (Fitzhugh 1972; see also McCaffrey, Loring and Fitzhugh 1989). This site was briefly investigated by Loring during the Pathways Project for Innu youth in 1993 (Loring and Ashini 2000). Somewhat further afield, we may note Fort Nascopie on Petitsikapau Lake in western Labrador (GeDp-01); the location of the post was visited in 1986 and a collection of historic artifacts surface-collected from the beach fronting the site (McCaffrey 1989).

In the Churchill Valley, Stage 2 assessment for the Lower Churchill Project included survey and testing to identify the HBC posts documented for the Churchill River drainage (IED/JWEL 2000; JWEL/Ielp 2001a). The Gull Island Depot, which appears to have been in operation for only a single season (1841-1842), was not relocated, but the two principal HBC outposts on the river, Winokapau Post (FhCt-01) and Sandy Banks (FgCg-01) were both identified and tested.

Winokapau Post, the more distant from North West River, is located on Wolf Island near the western end of Winokapau Lake, well beyond the western end of the Muskrat Falls reservoir area. Test excavations and mapping at Winokapau Post in 1998 and 1999 (IED/JWEL 2000; JWEL/Ielp 2001a) resulted in the identification of at least four archaeological features, including the remains of a relatively large building (almost certainly a dwelling), a possible brick and mud bake-oven, and a root cellar, distributed along an area measuring approximately 80 x 30 m. Associated artifacts recovered in testing consist of a relatively large assemblage of cultural materials that appear to date from the mid-late nineteenth century. Included in the collection are fragments of glass, ceramics and kaolin tobacco pipes, as well as several varieties of cut nails, miscellaneous iron objects and tin cans. A single stone flake of either chert or flint may be associated with a precontact occupation of the area. No definite nineteenth-century Innu or Settler features were identified at the site.
The Sandy Banks Post is situated within the Muskrat Falls reservoir area, on the north side of Churchill River, approximately 20 km west (upstream) from the Muskrat Falls portage, and roughly mid-way between Muskrat Falls and Gull Lake. The site was identified during Stage 2 assessment of the area in 1998 (IED/JWEL 2000). Testpits excavated at the western end of the site identified an assemblage of various sized iron nails and spikes, metal barrel hoops, and leg-hold trap parts: the colour and general condition of which suggested they had been exposed to heat sometime subsequent to their production. Also recovered at that time were a number of ceramic sherds, partially-melted glass, and kaolin tobacco-pipe fragments consistent with a nineteenth century occupation. Two relatively well-defined, discrete deposits of historic-period artifacts identified in testpits and mapped during the 1998 assessment suggest that the site had been comprised of at least two separate buildings, both of which appeared to have burnt, possibly as a result of a forest fire. These observations accord well with a general description of the post from 1875 (HBC document: 8.153/a/24, cited in JWEL/IELP 2001a: Appendix A). A second locus situated at the east end of FgCg-01 yielded a small quantity of quartzite flakes and carbonized animal fat attributable to a precontact-period Aboriginal occupation.

4.1.3 The Historic Period: Innu Settlement

Innu-European contact began in earnest in the mid-seventeenth century, with the development of the fur trade, and the establishment of the Postes du Roy and the Seigneurie de Mingan on the Québec Côte-Nord of the St. Lawrence River. Though the Innu of Hamilton Inlet were clearly in contact with Europeans by this time (Zimmerly 1975; Mailhot 1997), the earliest close contact documented specifically for the Upper Lake Melville area occurred when Louis Fornel established his trading post at North West River in 1743. This post was operated by a series of Québec-based and English merchants until 1836-1837, when the Hudson Bay Company (HBC) acquired the North West River properties. The HBC maintained a monopoly on the fur trade in the area until 1901, when Revillon Frères Trading Company Limited established a competing post on the south side of the river, opposite the HBC post (Zimmerly 1975).

It is clear that through most of the fur trade period, the Churchill River valley was part of the hunting and trapping grounds of the Innu, and that they spent most of each year moving through it. Throughout this period, the interior remained remote and relatively unknown to Europeans. In the seventeenth and eighteenth centuries, and continuing through most of the nineteenth, the parties involved in the fur trade consisted primarily of European traders on the one hand, and Innu hunters and trappers on the other. However, by the closing years of the nineteenth century, the Settler population became increasingly involved in fur trapping for trade, and by the early twentieth century had largely usurped Innu trapping grounds along the Churchill River and elsewhere (Tanner 1947, Tanner 1977; Mailhot 1997; Zimmerly 1975).

Archaeological data from historic-period Innu sites are sparse in southern and central Labrador. However, limited archaeological excavation of historic Innu campsites has been undertaken in northern Labrador and in northern Québec.
The distinguishing architectural feature of these northern (Mushuau) Innu sites is the presence of the distinctive surface-visible earthwalled tentrings first recognized and defined archaeologically by Thomas Lee at Fort Chimo, Quebec (Lee 1966, 1967). These are generally circular, some 3 - 4.5 m in diameter, with approximately 30 cm-high earthen walls, and often a ramp leading from the entrance to the central hearth; the hearths themselves are constructed of cobbles, mounded or pedestalled, and may contain charcoal and calcined bone (where charcoal and bone are lacking, these features may have been support stands for tin stoves). While few Innu appear to have used tin stoves in northern Labrador before 1910, they appear commonly in photographs taken in the 1920s; see Loring 1992 Appendix A. Large clusters of these earthwalled tentrings have also been identified at Mushuau-nipi (Indian House Lake) in Québec, where elongated sub-rectangular forms have also been recognized, and interpreted as the remains of shaputuan, or communal feasting structures (Samson 1975). Earthwalled tentrings are also conspicuous at many sites in northern Labrador (cf. Loring 1992), as far south as the Seal Lake area, on the Naskaupi drainage northwest of Sheshatshiu (McCaffrey, Loring and Fitzhugh 1989).

Hundreds, if not thousands, of these dwelling features have been recorded in northern Labrador-Ungava, but relatively few have been excavated (for a useful regional summary, see Loring 1992: 209-218; Appendix A).

In the few campsites that have been excavated, artifact assemblages generally suggest occupation after ca. 1850, and these assemblages have been characterized as “impoverished,” in the sense that they yield few artifacts, and a limited range of types (Loring 1992: 211). The most common categories of artifact encountered in these sites are gun paraphernalia (including shot, cartridge casings and percussion caps; see also the historic materials recovered from the historic Innu component at Ferguson Bay 1, on Ashuanipi Lake, western Labrador; Brake 2007), and tobacco-related items (including kaolin tobacco pipe fragments and tobacco brands). Less common, but occasionally encountered in such sites, are other metal implements, tin and glass containers, iron nails (in one site, fashioned into fish hooks: Loring 1992: Appendix A), seed beads, and sherds of ceramic dinnerwares (including teacups and plates).

These assemblages appear to post-date the middle of the nineteenth century, and in many cases, date to the late nineteenth or early twentieth centuries. It has been suggested that these represent a nineteenth-century renewal of intensive caribou hunting on the barrens following an hiatus in the early historic period, and that even in the late nineteenth century, the “impoverished” assemblages indicate limited use of, or interest in, European goods by the Mushuau Innu, and even at this relatively late date, limited integration into the fur trade (see Loring 1992).

The implications of these data for the archaeology of the historic Innu in central Labrador remain unclear. As noted, the earthwalled tentrings so common on the Barren Grounds to the north have not been encountered south of the Naskaupi River (see JWEL/IEMP 2001d: 28-29). As for the artifact assemblages, we may anticipate that in central Labrador, Innu integration into the fur
trade, and use of European goods generally, might occur earlier, and more intensively, than in the north. However, this hypothesis remains to be tested archaeologically.

At present, the only excavated sites in the Churchill River which may bear on this question are the cluster of sites recovered on the North Spur at Muskrat Falls in 2013 (Stantec 2014b). One site, FhCe-36, consisted of an isolated cobble hearth situated close to the top of the north-side portage trail. Excavations at this hearth yielded a relatively large assemblage of calcined bird, fish, and mammal bone. Associated artifacts from FhCe-36 (along with the historic component of an adjacent precontact site FhCe-37) included sherds of refined earthenware transfer-printed dinnerwares, sherds from a stoneware marmalade jar, fragments of a dark green glass case bottle, kaolin tobacco pipe fragments, two brass tacks, two tobacco brands, and one rectangular (“English”) gunflint. The assemblage suggests a date of occupation in the late nineteenth or early twentieth century. The artifact types are broadly consistent with those associated with northern Labrador Innu sites, but considerably less “impoverished,” and in fact they are also potentially consistent with a non-Innu (“Settler”) occupation in the same time period.

4.2 Manual Tree-Felling Program Results

In 2014, manual tree-felling was completed at 13 sites in the Churchill Valley between Muskrat Falls and Gull Lake. The total area cleared totalled some 5,700 m². Actual recovery work commenced, or was completed at, eight of these sites, two of which require further recovery work in 2015. Six sites have been cleared and are ready for recovery work but recovery has not commenced. Finally, one site remains to be cut and cleared (see Table 4.1).

Table 4.1 Manual Tree-Felling Completed in 2014 within the Churchill Valley

<table>
<thead>
<tr>
<th>Site</th>
<th>Cut Area (m²)</th>
<th>Recovery</th>
<th>Scheduled 2015-2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>FhCf-03</td>
<td>130</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCg-01</td>
<td>1425</td>
<td>Yes</td>
<td>(Yes)</td>
</tr>
<tr>
<td>FgCg-02</td>
<td>100</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCg-03</td>
<td>n/a</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCg-04</td>
<td>255</td>
<td>Yes</td>
<td>(Yes)</td>
</tr>
<tr>
<td>FgCg-05</td>
<td>100</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCg-06</td>
<td>100</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCh-01</td>
<td>300</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>FgCh-02/03</td>
<td>2000</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>FgCh-04</td>
<td>n/a</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FgCh-05</td>
<td>400</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
4.3 Sandy Banks 2 (FgCg-01)

FgCg-01 is situated on the north side of Churchill River at Sandy Banks, approximately 20 km west (upstream) of the Muskrat Falls portage and mid-way between Muskrat Falls and Gull Lake (Figure 1-1). The west end of the site, where excavations were conducted in 2014, is situated near the edge of a relatively level and well-drained terrace that varies between 6 m and 8 m above the river. Vegetation on the terrace includes stands of mature birch, spruce and fir, with the area toward the shoreline supporting a thick growth of alder and willow. The site is fronted by a narrow sandy beach on which canoes and flats could be landed and deployed during the ice-free months, thus, it was likely a desirable place to camp while travelling up or downriver. It is uncertain if the terrain and shoreline provided similar assets during the precontact Period.

An historic component at FgCg-01 was discovered in 1998 during a historic resources assessment of the Lower Churchill Project (IED/JWEL 2000). Artifacts recovered at that time from the eastern end of the site included an assemblage of various-sized iron nails and spikes, metal barrel hoops, a leg-hold trap part, partially melted glass, and sherds of ceramic and clay tobacco-pipes. The colour and general condition of the metal (and glass) artifacts suggested that they had been exposed to heat sometime subsequent to their production.

Recovery work at the western end of FgCg-01 commenced in 2014, with the excavation of a total of 200 m² in two loci (Locus A and Locus B) and also included excavation of approximately 100 shovel testpits between and surrounding these loci. Of the 200 m² gridded and opened at Locus A and Locus B, 128 m² have been excavated to sterile, however a number of features remain to be fully exposed and recorded within approximately 72 m² of the gridded area (Figure 4-2). Moreover, additional units will be opened in 2015 to further delineate precontact and historic-period features and artifact deposits, and testing will be undertaken to the east of the presently-excavated area in an effort to identify definitive evidence of the nineteenth century HBC trading post reported in documents for Sandy Banks. Because research of FgCg-01 will continue in 2015, the presentation and interpretation of information that follows must be seen as preliminary.
Figure 4-1 FgCg-01 - Locus A and Locus B
Figure 4-2 Plan of Excavations at FgCg-01
4.3.1 Site Stratigraphy and Features

The 2014 excavation area at FgCg-01 is comprised of two separate loci – Locus A and Locus B. Recovery completed to date at Locus A, situated at the west end of the site, has exposed and recorded six archaeological features: Features 1 and 2 date to the precontact period, and Features 3 and 4 to the historic period; due to the lack of cultural material associated with Features 5 and 6, a date for these sand deposits cannot be provided at this time. Because this sector of the site was used relatively extensively for camping and trapping-related activities in the twentieth century (i.e., a tilt was constructed and occupied until the mid-1980s), a number of areas within this locus have experienced varying degrees of disturbance.

Research at Locus B, at the eastern end of the site, has revealed two relatively large features – Features 7 and 8 - both dating to the precontact period. Although this part of the site appears to have seen relatively little use during the historic and contemporary periods, the stratigraphy is not typical for a site of this period in the Churchill River valley, and is relatively complex as a result of natural processes.

At Locus A, the stratigraphy across the site from south to north was relatively consistent near the terrace edge and comprised an upper duff layer of average thickness near the terrace edge, but was increasingly compressed and thin toward the central area of excavation. At the upper end of the gridded area, the underlying matrix showed only limited evidence of typical A and B horizons, but was generally a brown-beige, sandy clay-like composition that dipped in a number of locations, possibly as a result of long-term pedestrian traffic, and tree and brush removal for firewood and other purposes. Additionally, the area at the northern limit of the excavation was partially mounded, with a number of various blended soil layers in which a range of recent cultural debris was present (Figure 4-3). This area in particular had seen considerable activity throughout the entire twentieth century, and is the general location where the dilapidated remains of the tilt and midden comprising FgCg-08 are situated (see Section 5.6). The east to west profile across Locus A reveals a similar mixed stratigraphy, with various mixed soils as well dips and rises in elevation (Figure 4-4).
Figure 4-3 FgCg-01 Locus A - Profile from S4W38 - N4W38 (West View)
At Locus B, the stratigraphic profile from south to north exhibited mixed layering, but in general, toward the northern portion of the site, somewhat more predictable and typical A and B horizons were encountered (Figure 4-5). A profile taken along an east to west axis revealed the usual upper duff layer of standard thickness, which was followed, for the most part, by various-coloured layers of moist clay, with only intermittent patches of a typical A horizon. Unlike Locus A, where the majority of cultural materials were recovered relatively close to the base of the duff, at Locus B, precontact-period lithic debitage and artifacts were identified up to 0.40 m below surface - a depth typically not reached on other sites researched to date in the Churchill River valley (Figure 4-6). Further investigation at Locus B in 2015 will include research to develop insights into the site formation processes which have given rise to this complex and unusual stratigraphy.
Figure 4-5 FgCg-01 Locus B - Profile from N8W12 - S4W12 (East View)
Figure 4-6 FgCg-01 Locus B - Profile From S2W22 - S2W08 (North View)
4.3.1.1 Locus A Precontact-Period Features

Excavations at Locus A, FgCg-01, revealed a relatively small precontact component, represented by an assemblage of quartzite and chert artifacts and lithic debitage, as well as several sherds of grit-tempered Aboriginal ceramic. In general, the precontact materials from Locus A were associated with two somewhat diffuse cobble hearth features (Feature 1 and Feature 2) situated at, and up to 8.5 m behind, the 6 m-high terrace-edge overlooking Churchill River.

Feature 1

Feature 1 (Photo 6) is the remains of what appears to have been a small, diffuse cobble hearth measuring approximately 1.2 m by 0.55 m. The feature is comprised of roughly 15 fist-sized, fire-cracked cobbles. No charcoal suitable for dating was recorded with the feature.

Artifacts associated with Feature 1 include a small quantity of quartzite flakes as well as two artifacts fabricated from exotic chert: a side-scaper and a small core of chert which visually appears to derive from Ordovician chert sources on the west coast of the Island of Newfoundland. Also recovered from Feature 1 were 15 sherds of low-fired, grit-tempered Aboriginal ceramic.
Feature 2

Feature 2 (Photo 7) is situated eight meters to the south of Feature 1 at the edge of the approximately 6 m-high terrace overlooking Churchill River (Figure 4-2). It too is a relatively diffuse, but notably linear alignment of fire-cracked cobbles, a number of which are quartzite. Overall, the feature is 1.5 m in width by approximately 4 m long. While no organic material suitable for dating was recorded in association with Feature 2, a small assemblage of quantize and Ramah chert flakes was recovered, indicating that this feature also dates to the precontact period.

4.3.1.2 Locus A Historic Features

In addition to the precontact-period features, four additional features in Locus A appear to derive from an historic-period occupation of the site.

Feature 3

Feature 3 is situated in the southeast corner of Locus A, approximately 6 m back from the first prominent terrace-edge above the Churchill River (Figure 4-2). This feature is a relatively intact
arrangement of fire-cracked stone cobbles, measuring approximately 1.5 m long by 1.2 m wide (Photo 8). It was noted that a clearly-defined layer of charcoal covered the majority of this hearth, which in turn had been covered with a lens of fine-grained beach sand, likely used to extinguish the fire. The practice of extinguishing a campfire with sand may indicate the relatively recent age of the hearth: none of the precontact-period hearths recovered to date in the Churchill Valley appear to have been doused in this way.

Photo 8 Overhead View of Feature 3, Locus A - FgCg-01

Feature 4

Feature 4 (Photo 9) is situated in the southwest corner of Locus A, approximately six meters north of Feature 3 (Figure 4-2). A portion of this stone feature was initially identified during manual tree-felling, since it was partially exposed above the duff layer, suggesting that it was of relatively recent origin. Like other features recorded at Locus A, it is comprised of an arrangement of cobbles and boulders; however, this particular feature appears to be virtually intact, with only minimal evidence of heat fracturing, which almost certainly reflects its short-term usage. Additionally, the lack of fire-cracked stones and charcoal, as well as the general rectangular
shape, could indicate its use as a stove platform rather than a hearth feature as such. Stove platforms similar to Feature 4 have also been recorded in parts of northern Labrador and dated to the first half of the twentieth century (Loring 1992).

Feature 5

Feature 5, situated slightly west of the central area of Locus A, is a deposit of fine-grained, brown to beige beach-sand measuring approximately 1 m in diameter. Intermixed with the sand deposit (and scattered around its perimeter) were several charcoal fragments and stains that likely result from a forest-fire. Although there is little direct evidence for a hearth in Feature 5, the sand deposit was likely intended to douse a campfire (see Feature 6 below).

Feature 6

Feature 6 is situated in the northwest corner of Locus A and is comprised of a very diffuse scatter of cobbles (some of which are fire-cracked) as well as an approximately 1 m diameter deposit of fine-grained, brown to beige beach-sand that appears to have been deposited atop a
 charcoal lens (Figure 4-3). Again, it appears that the sand had been employed to douse a campfire; the limited number and scatter of stones remaining could indicate that the feature had been partially dismantled, with the stones reused at another location.

4.3.1.3 Locus B (Precontact) Features

Locus B is situated to the east of Locus A near the edge of the first prominent terrace above Churchill River (Figures 4-1 and 4-2). In places, the terrace is slightly deflated; however, it is vegetated and therefore appears stable, with no noticeable erosion. The terrain at Locus B is relatively level, rising only approximately 2 m from the southern edge to the northern extremity of the site. In 2014, during tree-felling operations, a number of quartzite flakes and fire-cracked rock was observed in a tree-throw at the eastern end of the site. Even though Locus B has proven to be relatively large, only two features have been defined to date.

Feature 7

Feature 7 is situated near the edge of the 6 m-high terrace above the river (Figure 4-2). Although excavation is not complete in this area, Feature 7 appears at present to be an approximately linear, diffuse boulder and cobble feature measuring at least 4 m long, south to north, by approximately 1.5 m across, east to west. Generally, the rocks comprising the feature do not appear to be significantly fire-cracked, nor was charcoal found in any quantity. However, numerous fragments of calcined bone were recovered within Feature 7, and also from the dense scatter of lithic debitage and artifacts (along with eleven sherds of grit-tempered Aboriginal ceramic) associated with the northern end of the feature. Further excavation of Feature 7 and surrounding units is required and will be completed in 2015.

Feature 8

Feature 8 is another generally linear-shaped alignment of boulders and cobbles, some of which are quartzite, situated toward the eastern end of Locus B (Figure 4-2). While several of the stones comprising the Feature appear fire-cracked, the majority of those exposed to date are not (Photo 10). Feature 8 is flanked to the southeast, southwest, and northeast, by dense concentrations of lithic debitage and artifacts. No concentrations of charcoal have yet been recovered from this feature.
4.3.2 Precontact Cultural Materials

In addition to the historic component, FgCg-01 yielded a substantial assemblage of precontact artifacts. These were widely-distributed across the site (see Figure 4-2), with a small but significant collection from Locus A, and a large sample from Locus B. Within Locus B, precontact artifacts were particularly concentrated in three dense clusters: one concentration of lithics was recovered from the southwest corner of Locus B, particularly to the north of Feature 7; another concentration to the east flanks Feature 8 to the northeast and southwest; finally, a third concentration is associated with the northernmost portion of Locus B. Because the sample sizes are quite varied, and because excavation at these concentrations is not yet complete, the following section will not discuss the collections from each concentration separately, but rather, will summarize the FgCg-01 collection as a whole, briefly noting possible variations between features.

Excavations at FgCg-01 in 2014 led to the recovery of 11,757 pieces of lithic debitage in all. In terms of raw material type, quartzite dominates the assemblage, representing 98.5% of the collection. Only 150 pieces of chert were recovered (1.3% of the collection). The majority of
these are light grey, dark grey or black cherts, some of which are potentially compatible with Saunders Chert, derived from an as yet unknown source in central Labrador. Some of the black cherts are highly vitreous, however and more closely resemble cherts found on the Island of Newfoundland. A small number of pieces of brown, green and tan cherts are almost certainly derived from the west coast of Newfoundland. Other materials, including Ramah (15 pieces), quartz (5 pieces), rhyolite (2 pieces) and nephrite (1 piece) are present only in trace quantities.

The quartzite assemblage includes a variety of debitage types: cobble shatter, primary flakes, tertiary flakes, and fine sharpening and repair flakes. Chert flakes are generally small, but include relatively large biface thinning flakes, as well as one small cortical cobble.

There is some variation in raw material frequency between features and loci. The Locus A assemblage is the most diverse, although the sample is extremely small. Of the 22 lithic debitage pieces recovered, 10 were of quartzite, six of chert, five of Ramah, and one of quartz. The lithic concentration associated with Feature 7 is the next most-varied; although 92.8 % of the assemblage was of quartzite, the 134 chert pieces represent 6.5 % of the collection, and in fact, comprise most (over 89 %) of the chert recovered from FgCg-01 in 2014. The lithic concentration associated with Feature 8 was less diverse, with 99.9 % of the debitage being of quartzite, while the concentration at the northern edge of Locus B was 100% quartzite.

Artifacts
FgCg-01 yielded a large collection of 226 finished artifacts. Lithic raw material frequency was similar to that of the debitage in that quartzite predominated, but among finished lithic artifacts, only 88.5 % were of quartzite, while 10.5 % were of chert. In other words, the prevalence of chert was much higher among artifacts than among the debitage, suggesting that chert implements were more likely to be brought to the site finished and complete. Chert was particularly important for certain artifact types: more than half of the scrapers and all of the projectile points were fashioned from chert. In addition to the lithic artifacts, the collection from FgCg-01 includes 26 sherds of grit-tempered, low-fired Aboriginal ceramic.

In all, the artifact assemblage from FgCg-01 included four projectile points, 34 biface fragments, nine scrapers, 20 preforms, 112 linear flakes, one linear flake core, 19 retouched and utilized flakes, one hammerstone, and 26 sherds of grit-tempered ceramic (Table 6.1, Photos 11-17). The majority of these artifacts were recovered in association with Feature 7 and Feature 8 in Locus B; in particular, projectile points and scrapers were recovered from both features, while ceramic sherds were recovered from Feature 7, and also from Feature 1 in Locus A.
Four projectile points were recovered from FgCg-01. Two (Photo11: A-B) are bases from small, thin corner-notched projectile points of mid-grey-black opaque chert, both made from thin flakes. The third (Photo11: C) is a complete triangular biface, again made from a thin flake of grey-black chert. The fourth (Photo11: D) is a tip fragment of a projectile point of indeterminate form. Two (Photo 11: A, D) were recovered from Feature 7, and two (Photo 11: B, C) from Feature 8. In size and form, both the corner-notched points and the triangular biface resemble late precontact projectile points associated with the Point Revenge Complex of coastal Labrador (see Fitzhugh 1978; Loring 1992; Pintal 1998). However, in contrast with Point Revenge points, these are made of an opaque grey-black chert, rather than Ramah; in this respect, they more closely resemble the notched projectile points and triangular bifaces of the Little Passage Complex of the Island of Newfoundland (e.g. see Pastore 1992: 11).
Photo 12 Bifaces Recovered from FgCg-01
Thirty-four bifaces were recovered during excavation at FgCg-01 in 2014 (Photo 12); three of these (Photo 12: E, G, CC) were fashioned from purple Saunders chert, while the remainder were all of quartzite.

None of the bifaces in the collection were complete. The majority were tip or lateral fragments from bifaces of indeterminate form. One of these is relatively thin and slender-bladed (Photo 12: K), while another is clearly lanceolate (Photo 12: X), and these may be from spearpoints, but for the most part these bifaces appear to be from large, wide-bladed tools that likely served as knives.

Larger fragments and bases in the collection in some cases reveal the original forms of these bifaces. Most appear to be broadly leaf-shaped, and these include both round-based (e.g. Photo 12: T, V) and asymmetric-square-based (e.g. Photo 12: W, Z, AA) varieties. A small number of relatively small, well-formed bifaces with markedly or slightly asymmetric squared bases (e.g. Photo 12: U, BB-DD) may be from small pentagonal or triangular bifaces.
The precontact artifact assemblage from FgCg-01 includes nine scrapers and scraper fragments. These include large quartzite teardrop-shaped scrapers (e.g. Photo 13: F-G), and another quartzite flake scraper of approximately teardrop form (Photo 13: A). One unusual quartzite scraper is a flat ovoid cobble spall (Photo 13: E). The dorsal surface is substantially cortex, while the ventral surface is extensively worked. The piece appears to have been originally a preform, but subsequently employed as a cobble-spall scraper. The remaining scrapers are of chert; one is a concave scraper (Photo 13: B), one a single-eared endscraper (Photo 13: C), one a broad, thin sidescraper (Photo 13: H), and finally, there are two cross-mending pieces from the proximal end of what was likely a small teardrop-shaped endscraper.
Two of the chert specimens (Photo 13: C, H) are of mottled grey, tan and green chert which likely derives from sources on the west coast of Newfoundland. Another (Photo 13: B) is made of an unusual highly vitreous brown and white mottled chert of unknown origin.

Photo 14 Preforms Recovered from FgCg-01
Of the 20 preform and preform fragments recovered from FgCg-01 (Photo 14), nine were tips, midsections, and lateral fragments of indeterminate form. At least one of these (Photo 14: A) appears to have fractured during manufacture. The remaining preforms appear to be mostly leaf-shaped in form with rounded bases, although one is clearly ovate (Photo 14: L), while another (Photo 14: B) is straight-based.

Photo 15 Linear Flakes Recovered from FgCg-01
The 112 linear flakes recovered from FgCg-01 (Photo 15) represent the most frequent artifact type (49.3% of artifacts) in the collection from this site. The majority were small linear flakes (e.g. Photo 15: A-N), but a significant minority (nearly 20%) were thick, large “macroblades” (e.g. Photo 15: S-EE). Almost all were of quartzite, but two were of Ramah and four of chert. Seven were double-aris blades (e.g. Photo 15: S, T, X, EE). Six exhibited evidence of unifacial use-wear, generally along the lateral margins (Photo 15: DD, EE), but two (e.g. Photo 15: W) showed steep distal use-wear and appeared to have served as expedient end-of-blade scrapers.

Photo 16 Retouched and Utilized Flakes and Core Recovered from FgCg-01

Nineteen retouched and utilized flakes (e.g. Photo 16) were recovered at FgCg-01 in 2014. The six retouched flakes and thirteen utilized flakes together represent (8.4% of the lithic artifact assemblage from the site. For the most part, these expedient tools exhibit unifacial retouch or use-wear; retouched and utilized edges found on these pieces include straight, convex, concave, and sinuous or saw-toothed margins. Of note are three retouched flakes with deep, steeply-retouched, well-defined spokeshave notches (e.g. Photo 16: A, I), one retouched flake, possibly a detached preform fragment, exhibiting jagged, saw-toothed retouch (Photo 16: G), and two utilized flakes employed as expedient flake scrapers (Photo 16: B, H).
One core fragment was recovered from FgCg-01 (Photo 16: J). This piece, recovered from Locus A Feature 1, was a small chunk of lightened and cracked (heat-treated) grey vitreous chert with one edge of cobble cortex, with flake scars indicating that it was a flake and linear flake core fragment.

Photo 17 Grit-Tempered Ceramic Sherds Recovered from FgCg-01 Locus A, Feature 1

In addition to lithic artifacts, the precontact assemblage from FgCg-01 includes 26 sherds of Aboriginal ceramic. These sherds are all relatively thick-walled with a grey, low-fired paste, grit temper, and smoothed (but not burnished) interior and exterior surfaces. They all appear to be body sherds, with no evidence of surface decoration. Fifteen of these sherds were recovered from Feature 1 in Locus A (Photo 17), while eleven sherds were recovered in association with Feature 7. Two small sherds, one from Locus A Feature 1, and one from Locus B Feature 7, have been selected for analysis to identify the source of the clay and the grit employed in the fabric from these vessels, in order to determine whether these ceramics were locally-produced.

4.3.3 Historic Cultural Materials

Excavations at Locus A resulted in the identification of a relatively small assemblage of early historic-period artifacts, consisting of 77 sherds of whiteware and two sherds of what appear to be ironstone, as well as six kaolin tobacco-pipe fragments (three stem and four bowl components, none of which cross-mend). Glass and metal objects from Locus A were limited to a cobalt-blue glass medicinal bottle, a 1942 American 1-cent piece, a tin can, and several brass cartridge cases, all of which appear to pertain to the later historic occupation of the nearby tilt (FgCg-08).
Only three historic-period artifacts were recovered from Locus B: a kaolin tobacco-pipe bowl fragment; a small metal bucket of undetermined age; and a miniature child’s porcelain (or ironstone) tea cup thought to date to the period 1870-1910 (Linda Dancy: pers. comm.).

Artifacts

The sherds of whiteware from Locus A comprise at least two (and possibly three) averaged-sized dinner-plates, one of which is seemingly thick. While a number of the sherds show a hint of blue tones in the glaze in places where it puddles (i.e., in crevices under rims and foot rings), the majority are relatively clear, indicating that the materials are more likely whiteware rather than the earlier (and slightly overlapping) pearlware (Photo 18: A; Sussman 1997). Noel Hume (1970) suggests that by 1820 pearlware was being supplanted by whiteware. Several mended sherds show that the plate had a dark blue, embossed and thickened edge that incorporates a stylized floral and dot pattern, sometimes referred to as a leaf or fern frond (Photo 18: B). Edged ware ceramics of this type generally date to the 1820s-1830s (Miller 1980, 1991), although production may have continued throughout the 1840s (Miller 1987). Generally, edged wares were considered the least-expensive tableware available with a colour decoration (Hunter and Miller 1994).
Photo 18 Historic Artifacts Recovered from FgCg-01 Locus A Feature 3
Also recorded at Locus A were several sherds of what appear to be whiteware, but with a patchy glaze. The deterioration of the glaze appears to have resulted from the artifacts being deposited in a campfire, or burnt during a forest fire, causing the glaze to become brittle and to spall away from the underlying body fabric (Photo 18: C). Plain, undecorated and inexpensive whiteware such as this (i.e. with no embossed edge), was common after 1820 and was reported to be found in many households by the 1840s; it continued in use well into the twentieth century (Miller 1987).

Regarding the tobacco-pipe fragments recovered from Locus A (Photo 18: D, E), because no identifying maker’s marks are present on the stems or bowls, no accurate time-period of production is available. However, the overall size and general form of the bowl components are consistent with a nineteenth century origin (Noel Hume 1970).

The two small sherds of what appear to be whiteware or, more likely, ironstone recovered from Locus A could therefore date from either the nineteenth or twentieth century. Unfortunately, the sherds are too small to provide an accurate interpretation of age.

4.3.4 **Interpretation and Summary**

4.3.4.1 **Precontact Occupation**

FgCg-01 is the central, and largest, single site in the Sandy Banks site cluster. The site is a multi-component site with nine features recorded to date. At least four of these appear to date to the precontact period: Features 1 and 2 in Locus A, and Features 7 and 8 in Locus B.

Feature 1 was a small, sparse cobble cluster with a small collection of precontact artifacts, including two of exotic chert derived from the west coast of Newfoundland, and 15 sherds of grit-tempered ceramic. Feature 7 was a substantial rock hearth feature 1 m wide by at least 4 m long, oriented perpendicular to the terrace edge, with calcined bone and precontact artifacts, and, to the north, a dense cluster of lithics, grit-tempered ceramics, and bone. Feature 8 was a substantial linear rock feature (or a “blended pair” of oval rock features) composed of unusually large and angular rocks for a precontact hearth, measuring 1.5 m wide by 4 m long, oriented approximately perpendicular to the terrace edge, and flanked by three dense clusters of lithic debris. Some 5 m to the north of Feature 8, away from the terrace edge, another dense concentration of quartzite debitage was encountered, with relatively few artifacts and some calcined bone. We may also note FgCg-01 Feature 2, which was not completely delineated in 2014, but appears to be a linear rock feature measuring 1.5 m wide by at least 4 m long, oriented perpendicular to the terrace edge; few artifacts have been recovered from this feature so far, but Feature 2 is also tentatively interpreted as a precontact feature. Pending completion of excavation, these are provisionally interpreted as hearth features, three of which are linear. Such a concentration of apparent linear hearth features has not previously been encountered during recovery work in the Churchill Valley.
Associated artifacts, fashioned primarily of quartzite, include a range of types, in frequencies most comparable to those noted in the quartzite assemblages on the North Spur of Muskrat Falls (Stantec 2014b). Bifaces and preforms were recovered in comparable frequencies, and, as on the North Spur, the predominant artifact type in the assemblage were linear flakes, while projectile points and formal scrapers were relatively rare. The features and artifact frequencies suggest that FgCg-01 consists of a series of multi-purpose campsites which saw a wide range of domestic activities, including, in part, the primary reduction of quartzite cobbles for the manufacture of both preforms and expedient tools. However, there is clearly some diversity in lithic raw material use at the site. Although the lithic assemblage from FgCg-01 was dominated by quartzite, it also contained minority frequencies of other lithic raw materials, principally chert, including Ordovician cherts which appear to derive from the west coast of Newfoundland. The assemblage also included artifact types resembling those of the late precontact period in both Labrador and the Island of Newfoundland, most notably the small corner-notched projectile points and triangular biface from Features 7 and 8, all fashioned from vitreous black cherts. Also noteworthy was the presence of Aboriginal grit-tempered ceramic sherds in at least two features.

The combination of features and artifacts suggests that FgCg-01 was a habitation site, but likely not merely a short-term travel stop. Rather, the precontact occupations of the site were likely of some duration, and included communal feasting activities. Further excavation and exposure of the lithic scatters associated with these features is required before we can estimate the sizes, or confirm the functions, of the domestic structures at FgCg-01. Diagnostic tool types are few, but distinctive, including Aboriginal ceramics and small, corner-notched chert projectile points. These suggest a late precontact date for at least some of the features at FgCg-01. We await the completion of excavation of the features at FgCg-01 to secure charcoal from secure contexts before we can select samples for radiocarbon dating and verify the date(s) of precontact occupation at the site.

4.3.4.2 Historic Occupation

Archaeological recovery at Locus A of FgCg-01 resulted in the identification of four features thought to date to the Historic Period. Features 3 and 4 are comprised of boulders and cobbles, with one (Feature 3) interpreted as a hearth, with the other (Feature 4) being either a hearth, or possibly a stone platform used to support a stove. The remaining two features (Features 5 and 6) are primarily beach-sand deposits, with no associated artifacts, thus an interpretation at this point would be speculative.

As described above (see Section 4.3.1.2), Feature 3 is situated near the southeast corner of the excavated units at Locus A, approximately 6 m back from the terrace-edge above the Churchill River. The feature measures approximately 1.5 m long by 1.2 m across, and was recorded with a clearly-defined layer of charcoal covering it, and a lens of fine-grained beach-sand deposited over the entire structure. Artifacts recorded in direct association with Feature 3 included 12 sherds of at least two historic-period refined earthenware plates dating to the period 1820s to
the 1840s. Also recorded in association with Feature 3 were sherds of plain-edged whiteware, dating to a similar period as the embossed edge wares described above, that had been exposed to sufficient heat to spall the glaze from the body-fabric. Other historic artifacts associated with Feature 3 include a number of kaolin tobacco-pipe stem and bowl fragments consistent with a nineteenth century time-period. Based on the materials recorded in association with Feature 3, it is interpreted that this hearth feature dates to the first half of the nineteenth century, or possibly slightly later. Additionally, and perhaps more importantly, if the sand deposited over the fire was retrieved from the beach as seems likely based on its texture and colour, in general terms, its use to extinguish the fire may indicate seasonality, as retrieval of beach-sand would almost certainly have been a warm-season activity. If the hearth was used during winter, obtaining sand from the frozen and snow and ice-covered beach would be problematic, and the obvious material to extinguish a fire at that time of year would be snow. No evidence to indicate that this hearth was situated within a structure was identified. However, the distribution of historic-period artifacts relatively close to Feature 3 could suggest that it was.

Feature 4 of Locus A is situated approximately six meters north of Feature 3, and is also a stone feature: however, this particular feature appears to be virtually intact, with only minimal evidence of heat fracturing, which almost certainly reflects its short-term usage. Additionally, the lack of fire-cracked stones and charcoal, as well as the general rectangular shape, could indicate its use as a stove platform rather than a hearth. Stove platforms similar to Feature 4 have also been recorded in parts of northern Labrador and dated to the first half of the twentieth century (Loring 1992). Artifacts recorded in direct association with Feature 4 were limited to two small rim-sherds of what appears to be a whiteware or, more likely, ironstone of either nineteenth or twentieth century origin. If Feature 4 is a stove platform rather than a hearth, as it appears to be, it would certainly have been used inside a tent structure. However, no materials or artifact scatter suggestive of a structure were identified. While other historic-period artifacts, including nineteenth century edge-ware and kaolin tobacco-pipe fragments were recovered from the general area of Locus A, their distances from Feature 4 likely indicates that they are not associated. In summary, due to the limited quantity of artifacts directly associated with Feature 4, it is not possible at this point to provide an accurate date for the occupation it derives from. Additional field research of Feature 4 is scheduled for 2015, which will involve dismantling the feature in an effort to locate datable in situ materials within or beneath the stonework.

Both Features 5 and 6 are essentially deposits of brown-beige beach-sand, with no artifacts directly associated with them. However, the material appears to be the same as that recorded at Feature 3, and it seems reasonable to conclude that these materials were also transported from the beach for a similar purpose. However, in the absence of associated and datable cultural materials, Features 5 and 6, while possibly representing a Historic Period event, cannot be interpreted definitively at this time.

Regarding Locus B, only three historic-period artifacts were recovered in 2014: one very small kaolin tobacco-pipe bowl fragment of undetermined age, but possibly nineteenth century; a
small metal bucket of undetermined age; and a miniature child’s porcelain (or ironstone) tea cup thought to date to the period 1870-1910 (Linda Dancy: pers. comm.). The presence of the child’s teacup suggests that a family (or families) resided at Sandy Banks sometime during the mid-late nineteenth century or beginning of the twentieth. This in itself does not confirm ethnicity, but the practice of bringing children into the country at that time, as the child’s toy may suggest, could reflect an Innu presence rather than Settler.

Archaeological recovery of 200 m² at Locus A and Locus B, as well as excavation of approximately 100 shovel testpits across both loci, leave little doubt that the area of FgCg-01 investigated in 2014 is not the site of the HBC post known to have been in seasonal and intermittent operation at Sandy Banks for a period of 39 years between the 1830 and 1870s (JWEL/IELP 2001a). A recent discovery, review and interpretation of archived GPS data originally collected by Nalcor and Project archaeologists as part of the 1998 historic resources assessment, strongly suggest that the area of focus at that time, where an assemblage of nineteenth century iron, and ceramic and glass artifacts were recovered, is located approximately 45 m east of Locus B. As a result of this information, key questions that arise from this include: Are the historic-period features and artifacts recovered from Locus A directly or indirectly associated with the Sandy Banks post? Or, do they represent temporary camps independent of trade activities?

Even though there are contemporary records indicating that Innu families were camped at (or nearby) Winokapau Post in 1866, the information provided by Babel (JWEL 1998), is not sufficiently clear to identify or propose a consistent pattern for Innu visiting HBC posts (i.e., was it an accepted practice that they would camp at the post, or were they encouraged to reside elsewhere).

The historic-period features and associated artifacts recorded at Locus A of FgCg-01, particularly Features 3 and 4, likely derive from an Aboriginal (Innu) occupation of the site. While the artifacts recorded in direct association with the cobble and boulder hearth (Feature 3), fall well within the period of usage known for the post, the sand deposited over the charcoal layer could indicate an occupation in a season during which HBC personnel were typically not present at Sandy Banks (e.g., summer). On the other hand, if the occupation was in the fall between September and November before freeze-up, this could account for the sand and therefore indicate that the camp was occupied by Innu who were interacting directly with the post. As no remains indicating seasonality were recorded in association with Feature 3, the question of whether or not the Innu who constructed and used the hearth were there as a result of trade, has to remain an open question for the moment. Further research of Feature 3 scheduled for 2015 will involve dismantling the stonework. If, for example, carbonized bone is present, this could help provide information regarding seasonality. Additionally, testing of this terrace to the east of Locus B may result in the discovery of additional Innu hearths contemporary with the Sandy Banks post.

Feature 4, interpreted as a stove platform dating to the nineteenth or first part of the twentieth century, may also have been associated with a camp whose occupants were interacting with